Trigonometric integrals $\int \tan^m x \sec^n x \, dx$

General approach

1. Is m odd?
 - yes
 - m is odd
 - Use $\tan x = \frac{\sin x}{\cos x}$
 and $\sec x = \frac{1}{\cos x}$
 - no
 - Is n odd?
 - yes
 - m is even, n is odd
 - Beyond the scope of MATH101
 - no
 - Is $n \geq 2$?
 - yes
 - m is even, n is even, $n \geq 2$
 - 1. Separate one $\sec^2 x$
 - 2. All other $\sec x \rightarrow \tan x$
 using $\sec^2 x = 1 + \tan^2 x$
 - 3. Substitution
 $u = \tan x$
 - no
 - m is even, $n = 0$
 - 1. Separate one $\tan^2 x$
 - 2. Simplify
 - 3. One integral (that contains $\sec^2 x$)
 $u = \tan x$
 second integral-repeat 1-3 if needed
Case m is even, n = 0.

\[m = 2k. \]

\[
\int \tan^{2k} x \, dx = \int \tan^{2k-2} x \tan^2 x \, dx
\]
\[= \int \tan^{2k-2} x (\sec^2 x - 1) \, dx \]
\[= \int \tan^{2k-2} x \sec^2 x \, dx - \int \tan^{2k-2} \, dx \]

For this integral,

use \(u = \tan x \)

Example \(\int \tan^2 x \, dx \)

Solution Using \(\tan^2 x = \sec^2 x - 1 \),

\[
\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \tan x - x + C
\]

Example \(\int \tan^4 x \, dx \)

Solution Using \(\tan^2 x = \sec^2 x - 1 \),

\[
\int \tan^4 x \, dx = \int \tan^2 x \tan^2 x \, dx = \int \tan^2 x (\sec^2 x - 1) \, dx
\]
\[= \int \tan^2 x \sec^2 x \, dx - \int \tan^2 x \, dx \]

For first integral:

\[\left\{ \begin{array}{l}
 \text{let } u = \tan x \\
 u' = \sec^2 x
 \end{array} \right. \]

\[= \int u^2 \, du - (\tan x - x) + C \]
\[= \frac{u^3}{3} - (\tan x - x) + C \]
\[= \frac{\tan^3 x}{3} - \tan x + x + C \]