Area between the curves, volumes, and centroids

Example 1 (easier, goal: to see similarities)
Consider the region R which lies between the curves $y = 1 - x^2$ and $y = x - 2$, $-1 \leq x \leq 1$.

(a) Set up the expression that represents the area of R

(b) Suppose that the region R is revolved about $y = -3$. Set up the expression that represents the volume of the obtained solid.

© What is x-coordinate of the centroid of the region R?
Example 2 \(\int f(x) \, dx \), revolving about horizontal axis for intersecting curves.

Consider the region \(R \) which is bounded by

\[y = x^2, \quad y = x \quad \text{for} \quad -2 \leq x \leq 2 \]

(a) Area of \(R \) (just set up)
(b) What is the volume of the solid obtained by revolving \(R \) about \(y = -2 \)? (set up only)
(c) \(\bar{x} \) - ? (just set up)
Example 3 (Integration with respect to y, revolving about vertical axis, y)

Consider the region R bounded by all three curves $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, and $y = 4$.

(a) Area of R (set up)

(b) Suppose that R is revolved about $y = 0$. What is the volume of obtained solid? (setup)

(c) What is y-coordinate of the centroid of region R? (setup)
Example 4 Let's do same as in example 3 but for the region bounded by \(x = \frac{1}{y}, \quad x = \frac{1}{3y}, \quad \frac{1}{2} \leq y \leq 4 \).

Solution

(a) Find area.