Markov chains: construction of the path space

Mathav Murugan

February 11, 2020

Definition 0.1. Let \((S, \mathcal{S})\) be a measurable space. We say that \(p : S \times S \to [0, 1]\) is a transition probability on \((S, \mathcal{S})\) if

1. for each \(x \in S\), \(A \mapsto p(x, A)\) is a probability measure on \((S, \mathcal{S})\);
2. for each \(A \in \mathcal{S}\), \(x \mapsto p(x, A)\) is a \((S, \mathcal{S})\)-measurable function.

Let \((\Omega, \mathcal{F}, P)\) be a probability space and let \((\mathcal{F}_n)_{n \in \mathbb{Z}_+}\) be a filtration. A \((\mathcal{F}_n)\)-adapted \(S\)-valued stochastic process \(X = \{X_n : n \in \mathbb{Z}_+\}\) is a time-homogeneous Markov chain with respect to \((\mathcal{F}_n)\) with transition probability \(p\) if it satisfies the following Markov property: for all \(n \in \mathbb{Z}_+\) and for all \(A \in \mathcal{S}\), we have

\[P(X_{n+1} \in A | \mathcal{F}_n)(\omega) = p(X_n(\omega), A) \quad \text{a.s.} \quad (0.1) \]

The probability distribution \(\mu\) of \(X_0\) is called the initial distribution of \(X\). Note that the above definition implies that \(X_n : (\Omega, \mathcal{F}_n) \to (S, \mathcal{S})\) is measurable for all \(n \in \mathbb{Z}_+\).

Exercise: Show that if \(X\) is a Markov chain with respect to \((\mathcal{F}_n)_{n \in \mathbb{Z}_+}\), then it is also a Markov chain with respect to \((\mathcal{F}_n^X)_{n \in \mathbb{Z}_+}\) (this is the filtration associated to \(X\)).

An equivalent definition of Markov property is the following (use FMCT to show the equivalence): for all \(f \in b\mathcal{S}\)

\[E(f(X_{n+1}) | \mathcal{F}_n) = \int_{S} f(y) p(X_n, dy), \quad \text{a.s.} \quad (0.2) \]

The first issue is the existence of Markov chains. Given a transition probability \(p\) and an initial distribution \(\mu\), how to construct a probability space \((\Omega, \mathcal{F}, P)\), a filtration \((\mathcal{F}_n)\), a stochastic process \(X = \{X_n : n \in \mathbb{Z}_+\}\) that is a Markov chain with respect to \((\mathcal{F}_n)\)?

The fundamental existence theorem for probability measures is Carathéodory’s extension theorem (See Theorem A.1.3 in the text).

Theorem 0.2 (Carathéodory’s extension theorem). Let \(\mathcal{A}\) be an algebra on \(\Omega\). Let \(\mu : \mathcal{A} \to [0, \infty]\) be \(\sigma\)-finite measure on \(\mathcal{A}\) (that is, a countably additive set function on \(\mathcal{A}\)). Then there exists an unique extension \(\tilde{\mu} : \sigma(\mathcal{A}) \to [0, \infty]\) of \(\mu\) such that \(\tilde{\mu}\) is a measure on \((\Omega, \sigma(\mathcal{A}))\). (Here extension means that \(\tilde{\mu}(A) = \mu(A)\) for all \(A \in \mathcal{A}\).)
We recall the definition of product σ-field.

Definition 0.3. Let $(\Omega_i, \mathcal{F}_i)$ be a family of measurable spaces for $i \in I$. Let $\prod_{i \in I} \Omega_i$ denote the product space (cartesian product of sets). For $i \in I$, let $\pi_i : \prod_{j \in I} \Omega_j \rightarrow \Omega_i$ denote the natural projection map (projection on to the ‘i-th component’). A **measurable rectangle** in $\prod_{i \in I} \Omega_i$ is a set of the form

$$\cap_{i \in F} \pi_i^{-1}(A_i),$$

where F is a finite subset of I, and $A_i \in \mathcal{F}_i$ for all $i \in F$ (Exercise: The set of measurable rectangles forms a π-system). The smallest σ-field containing all the measurable rectangles is called the **product σ-field** and is denoted by $\prod_{i \in I} \mathcal{F}_i$ (note that this is not the cartesian product of \mathcal{F}_i as sets). It is easy to check that $\prod_{i \in I} \mathcal{F}_i$ is the smallest σ-field \mathcal{F} on $\prod_{i \in I} \Omega_i$ such that the projection maps $\pi_i : (\prod_{i \in I} \Omega_i, \mathcal{F}) \rightarrow (\Omega_i, \mathcal{F}_i)$ is measurable for all $i \in I$.

The following lemma is often used to prove uniqueness of measures.

Lemma 0.4. Let \mathcal{P} be a π-system on Ω, and let P and Q be two probability measures on $(\Omega, \sigma(\mathcal{P}))$. If $P(A) = Q(A)$ for all $A \in \mathcal{P}$, then

$$P(A) = Q(A) \quad \text{for all } A \in \sigma(\mathcal{P}).$$

Proof. Define

$$\mathcal{L} = \{A \in \sigma(\mathcal{P}) : P(A) = Q(A)\}.$$

It is easy to check that \mathcal{L} is a λ-system such that $\mathcal{L} \supseteq \mathcal{P}$. The conclusion $\mathcal{L} = \sigma(\mathcal{P})$ follows from π-λ theorem. \qed

The following existence theorem is a basic building block for the construction of Markov chains. Our exposition is based on [Ash, Chapter 2].

Theorem 0.5. Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ be a probability space and let $(\Omega_2, \mathcal{F}_2)$ be a measurable space. Let $\mu_2 : \Omega_1 \times \mathcal{F}_2 \rightarrow [0, 1]$ be such that

(a) $A \mapsto \mu_2(\omega_1, A)$ is a probability measure on $(\Omega_2, \mathcal{F}_2)$ for all $\omega_1 \in \Omega_1$.

(b) $\omega_1 \mapsto \mu_2(\omega_1, A)$ is a $(\Omega_1, \mathcal{F}_1)$-measurable function for all $A \in \mathcal{F}_2$.

Then there is a unique probability measure μ on the product measurable space $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ such that

$$\mu(A \times B) = \int_A \mu_2(\omega_1, B) \mu_1(d\omega_1), \quad \text{for all } A \in \mathcal{F}_1, B \in \mathcal{F}_2.$$

This measure μ is given by

$$\mu(F) = \int_{\Omega_1} \mu_2(\omega_1, F(\omega_1)) \mu_1(d\omega_1), \quad \text{for all } F \in \mathcal{F}_1 \times \mathcal{F}_2,$$

(0.3)

where $F(\omega_1)$ denotes the **section** of F at ω_1:

$$F(\omega_1) = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in F\}.$$

(Warning: $\mathcal{F}_1 \times \mathcal{F}_2$ is the product σ-field, and not the cartesian product of \mathcal{F}_1 and \mathcal{F}_2.)
Proof. The uniqueness of \(\mu \) follows immediately from Lemma 0.4 (by letting \(\mathcal{P} \) to be the \(\pi \)-system of measurable cylinders). The remainder of the proof is devoted to the existence.

We claim that

\[
F(\omega_1) \in \mathcal{F}_2 \text{ for all } \omega_1 \in \Omega_1 \text{ and for all } F \in \mathcal{F}_1 \times \mathcal{F}_2. \tag{0.4}
\]

Define \(\mathcal{L}_1 = \{ F \in \mathcal{F}_1 \times \mathcal{F}_2 : F(\omega_1) \in \mathcal{F}_2 \text{ for all } \omega_1 \in \Omega_1 \} \). Then \(\mathcal{L}_1 \) is \(\lambda \)-system that contains all the measurable rectangles (why?). By \(\pi \)-\(\lambda \) theorem, we have \(\mathcal{L}_1 = \mathcal{F}_1 \times \mathcal{F}_2 \). This completes the proof of (0.4) \(\square \)

Our next claim is that

\[
\omega_1 \mapsto \mu_2(\omega_1, F(\omega_1)) \text{ is a measurable function on } (\Omega_1, \mathcal{F}_1), \text{ for all } F \in \mathcal{F}_1 \times \mathcal{F}_2. \tag{0.5}
\]

Note that \(\mu_2(\omega_1, F(\omega_1)) \in [0, 1] \) for all for all \(F \in \mathcal{F}_1 \times \mathcal{F}_2 \) and for all \(\omega_1 \in \Omega_1 \) by (0.4). As above, we define

\[
\mathcal{L}_2 = \{ F \in \mathcal{F}_1 \times \mathcal{F}_2 : \omega_1 \mapsto \mu_2(\omega_1, F(\omega_1)) \text{ is a measurable function on } (\Omega_1, \mathcal{F}_1) \}.
\]

If \(F = A_1 \times A_2 \) where \(A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2 \), we have \(\mu_2(\omega_1, F(\omega_1)) = \mu_2(\omega_1, A_2)1_{A_1}(\omega_1) \). Hence \(\omega_1 \mapsto \mu_2(\omega_1, F(\omega_1)) \) is \((\Omega_1, \mathcal{F}_1) \)-measurable, as it is a product of measurable functions \(\omega_1 \mapsto \mu_2(\omega_1, A_2) \). Therefore \(\mathcal{L}_2 \) contains all the measurable rectangles. \(\mathcal{L}_2 \) is a \(\lambda \)-system (Exercise). By \(\pi \)-\(\lambda \) theorem we conclude \(\mathcal{L}_2 = \mathcal{F}_1 \times \mathcal{F}_2 \). Hence we obtain (0.5).

Define

\[
\mu(F) = \int_{\Omega_1} \mu_2(\omega_1, F(\omega_1)) \mu_1(d\omega_1), \text{ for all } F \in \mathcal{F}_1 \times \mathcal{F}_2.
\]

By (0.5), the above integral exists and belongs to \([0, 1]\). To prove that \(\mu \) is a measure, consider \(F_1, F_2, \ldots \) denote a sequence of pairwise disjoint sets in \(\mathcal{F}_1 \times \mathcal{F}_2 \). Then

\[
\mu \left(\bigcup_{n=1}^{\infty} F_n \right) = \int_{\Omega_1} \mu_2(\omega_1, \bigcup_{n=1}^{\infty} F_n(\omega_1)) \mu_1(d\omega_1)
\]

\[
= \int_{\Omega_1} \sum_{n=1}^{\infty} \mu_2(\omega_1, F_n(\omega_1)) \mu_1(d\omega_1) \quad \text{(since } (F_n)_{n \geq 1} \text{ are disjoint)}
\]

\[
= \sum_{n=1}^{\infty} \int_{\Omega_1} \mu_2(\omega_1, F_n(\omega_1)) \mu_1(d\omega_1) \quad \text{(by Monotone convergence theorem)}
\]

\[
= \sum_{n=1}^{\infty} \mu(F_n),
\]

proving that \(\mu \) is a measure. If \(A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2 \), we have

\[
\mu(A_1 \times A_2) = \int_{\Omega_1} \mu_2(\omega_1, (A_1 \times A_2)(\omega_1)) \mu_1(d\omega_1)
\]

\[
= \int_{\Omega_1} \mu_2(\omega_1, A_2)1_{A_1}(\omega_1) \mu_1(d\omega_1) = \int_{A_1} \mu_2(\omega_1, A_2) \mu_1(d\omega_1).
\]
Substituting \(A_1 = \Omega_1, A_2 = \Omega_2 \) in the above formula yields that \(\mu \) is a probability measure.

\[\square \]

Notation: If \((\Omega, \mathcal{F})\) is a measurable space, we denote by \(m\mathcal{F} \) the space of real valued Borel measurable functions on \((\Omega, \mathcal{F})\). By \(b\mathcal{F} \), we denote the bounded functions in \(m\mathcal{F} \).

Theorem 0.6. Assume the hypothesis of Theorem 0.5. Let \((\Omega, \mathcal{F}) = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)\) denote the product measurable space. Then

(a) For all \(f \in m\mathcal{F} \) and for all \(\omega_1 \in \Omega_1, \omega_2 \mapsto f(\omega_1, \omega_2) \) belongs to \(m\mathcal{F}_2 \).

(b) For all \(f \in b\mathcal{F} \), the function \(\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \) belongs to \(b\mathcal{F}_1 \).

(c) For all \(f \in b\mathcal{F} \), we have

\[
\int_{\Omega} f(\omega) \, d\mu = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \right) \mu_1(d\omega_1).
\]

Proof. (a) Fix \(\omega_1 \in \Omega_1 \) and define \(g(\omega_2) = f(\omega_1, \omega_2) \), where \(f \in m\mathcal{F} \). Let \(B \) be a Borel subset of \(\mathbb{R} \). Note that \(g^{-1}(B) = F(\omega_1) \), where \(F = f^{-1}(B) \in \mathcal{F} \). By (0.4), \(g^{-1}(B) \in \mathcal{F}_2 \) for all Borel subsets \(B \). Therefore \(\omega_2 \mapsto f(\omega_1, \omega_2) \) belongs to \(m\mathcal{F} \) for all \(f \in m\mathcal{F} \) and for all \(\omega_1 \in \Omega_1 \).

(b) By (a), \(\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \) exists and is finite for all \(f \in b\mathcal{F}, \omega_1 \in \Omega_1 \). Since \(\mu_2(\omega_1, \cdot) \) is a probability measure on \((\Omega_2, \mathcal{F}_2)\), we have

\[
\left| \int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \right| \leq \int_{\Omega_2} \left(\sup_{\Omega} |f| \right) \mu_2(\omega_1, d\omega_2) = \sup_{\Omega} |f|, \quad \text{for all } \omega_1 \in \Omega_1, f \in b\mathcal{F}.
\]

Therefore \(\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \) is bounded. It remains to show measurability. To this end, we define

\[
\mathcal{H}_1 = \left\{ f \in b\mathcal{F} : \omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \text{ belongs to } m\mathcal{F}_1 \right\}.
\]

Let \(\mathcal{P} \) denote the \(\pi \)-system of measurable cylinders. Let \(A_1 \times A_2 \in \mathcal{P} \), where \(A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2 \). Then \(\omega_1 \mapsto \int_{\Omega_2} 1_{A_1 \times A_2}(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) = 1_{A_1}(\omega_1) \mu_2(\omega_1, A_2) \) belongs to \(m\mathcal{F}_1 \) as it is a product of measurable functions \(\omega_1 \mapsto 1_{A_1}(\omega_1) \) and \(\omega_1 \mapsto \mu_2(\omega_1, A_2) \). By linearity of integrals \(\mathcal{H}_1 \) is a vector space. Let \(f_n \uparrow f, 0 \leq f_n \in \mathcal{H}_1 \) for all \(n \in \mathbb{N} \) and \(f \in b\mathcal{F} \). By MCT,

\[
\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) = \lim_{n \to \infty} \int_{\Omega_2} f_n(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2), \quad \text{for all } \omega_1 \in \Omega_1.
\]

Since limit of measurable functions is measurable, \(f \in \mathcal{H}_1 \). By FMCT, \(\mathcal{H}_1 = b\mathcal{F} \).

(c) Define

\[
\mathcal{H}_2 = \left\{ f \in b\mathcal{F} : \int_{\Omega} f \, d\mu = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(\omega_1, d\omega_2) \right) \mu_1(d\omega_1) \right\}.
\]
By (0.3), $1_F \in \mathcal{H}_2$ for all $F \in \mathcal{F}$. By linearity of integrals \mathcal{H}_2 is a vector space. If $f_n \uparrow f$ with $0 \leq f_n \in \mathcal{H}_2$ for all $n \in \mathbb{N}$, and $f \in b\mathcal{F}$. By the equation

$$
\lim_{n \to \infty} \int_{\Omega} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega_1} \left(\int_{\Omega_2} f_n(\omega_1, \omega_2) \, \mu_2(\omega_1, d\omega_2) \right) \, \mu_1(d\omega_1)
$$

and by using MCT (three times; why?), we obtain $f \in \mathcal{H}_2$. By FMCT, $\mathcal{H}_2 = b\mathcal{F}$.

Theorems 0.5 and 0.6 have the following extension to n-fold products.

Theorem 0.7. Let $(\Omega_j, \mathcal{F}_j)$ be measurable spaces for $j = 1, \ldots, n$. Let μ_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$, and for each $(\omega_1, \ldots, \omega_j) \in \Omega_1 \times \cdots \times \Omega_j$, let $A \mapsto \mu_{j+1}(\omega_1, \ldots, \omega_j, A)$ be a probability measure on $(\Omega_j, \mathcal{F}_j)$ (for $j = 1, \ldots, n-1$). Assume that for all $j = 1, \ldots, n-1$, $A \in \mathcal{F}_j$, the function $(\omega_1, \ldots, \omega_j) \mapsto \mu_{j+1}(\omega_1, \ldots, \omega_j, A)$ is Borel measurable on $(\Omega_1 \times \cdots \times \Omega_j, \mathcal{F}_1 \times \cdots \times \mathcal{F}_j)$.

Let $(\Omega, \mathcal{F}) = (\Omega_1 \times \cdots \times \Omega_n, \mathcal{F}_1 \times \cdots \times \mathcal{F}_n)$. Then there exists a unique probability measure μ on (Ω, \mathcal{F}) such that for each measurable rectangle $A_1 \times \cdots \times A_n \in \mathcal{F}$,

$$
\mu(A_1 \times \cdots \times A_n) =
\int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu_2(d\omega_1, d\omega_2) \cdots \int_{A_{n-1}} \mu_{n-1}(d\omega_1, \ldots, d\omega_{n-1}) \int_{A_n} \mu_n(d\omega_1, \ldots, d\omega_n).
$$

(0.6)

(In the RHS of the above expression, we evaluate the innermost integral over A_n first and move outwards). Furthermore, for all $f \in b\mathcal{F}$,

$$
\int_{\Omega} f \, d\mu = \int_{\Omega_1} \mu_1(d\omega_1) \int_{\Omega_2} \mu_2(d\omega_1, d\omega_2) \cdots \int_{\Omega_{n-1}} \mu_{n-1}(d\omega_1, \ldots, d\omega_{n-1}) \int_{\Omega_n} f(d\omega_1, \ldots, d\omega_n) \mu_n(d\omega_1, \ldots, d\omega_n).
$$

(0.7)

Proof. The proof is by induction on n. The case $n = 2$ follows from Theorems 0.5 and 0.6.

For the induction step from the case $n-1$ to the case n, we apply the $n = 2$ result to the spaces $(\Omega_1 \times \cdots \times \Omega_{n-1}, \mathcal{F}_1 \times \cdots \times \mathcal{F}_{n-1})$ and $(\Omega_n, \mathcal{F}_n)$ and using the fact that $(\mathcal{F}_1 \times \cdots \times \mathcal{F}_{n-1}) \times \mathcal{F}_n = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$.

Exercise: Show that $(\mathcal{F}_1 \times \cdots \times \mathcal{F}_{n-1}) \times \mathcal{F}_n = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$.

By the induction hypothesis there is a unique probability measure λ_{n-1} on $(\Omega_1 \times \cdots \times \Omega_{n-1}, \mathcal{F}_1 \times \cdots \times \mathcal{F}_{n-1})$ such that for all $A_1 \in \mathcal{F}_1, \ldots, A_{n-1} \in \mathcal{F}_{n-1}$

$$
\lambda_{n-1}(A_1 \times \cdots \times A_{n-1}) = \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu_2(d\omega_1, d\omega_2) \cdots \int_{A_{n-1}} \mu_{n-1}(d\omega_1, \ldots, d\omega_{n-1})
$$

\[\lambda_{n-1}(A_1 \times \cdots \times A_{n-1}) = \int_{A_1} \mu_1(d\omega_1) \int_{A_2} \mu_2(d\omega_1, d\omega_2) \cdots \int_{A_{n-1}} \mu_{n-1}(d\omega_1, \ldots, d\omega_{n-1}) \]
By the $n = 2$ case (Theorem 0.5), there exists a measure μ such that for all $A \in \mathcal{F}_1 \times \ldots \times \mathcal{F}_{n-1}$, $A_n \in \mathcal{F}_n$,

$$\mu(A \times A_n) = \int_A \mu_n(\omega_1, \ldots, \omega_{n-1}, A_n) \, d\lambda_{n-1}(\omega_1, \ldots, \omega_{n-1})$$

$$= \int_{\Omega_1 \times \ldots \times \Omega_{n-1}} 1_A(\omega_1, \ldots, \omega_{n-1}) \mu_n(\omega_1, \ldots, \omega_{n-1}, A_n) \, d\lambda_{n-1}(\omega_1, \ldots, \omega_{n-1}).$$

If $A = A_1 \times \ldots \times A_{n-1}$, then $1_A(\omega_1, \ldots, \omega_{n-1}) = 1_{A_1}(\omega_1) \ldots 1_{A_{n-1}}(\omega_{n-1})$. Along with induction hypothesis on (0.7) for $n - 1$, we obtain (0.6) for μ.

Let $f \in b\mathcal{F}$. The proof of (0.7) for involves a similar application of the $n = 2$ case (using Theorem 0.6)

$$\int f \, d\mu = \int_{\Omega_1 \times \ldots \times \Omega_{n-1}} \int_{\Omega_n} f(\omega_1, \ldots, \omega_n) \, \mu_n(\omega_1, \ldots, \omega_{n-1}, d\omega_n) \, d\lambda_{n-1}(\omega_1, \ldots, \omega_{n-1}).$$

We use induction hypothesis corresponding to (0.7) for the $(n - 1)$-fold product since $(\omega_1, \ldots, \omega_{n-1}) \mapsto \int_{\Omega_n} f(\omega_1, \ldots, \omega_n) \, \mu_n(\omega_1, \ldots, \omega_{n-1}, d\omega_n)$ is $\mathcal{F}_1 \times \ldots \times \mathcal{F}_{n-1}$-measurable. This concludes the proof of (0.7).

\textit{Definition 0.8.} For each $j = 1, 2, \ldots$, let $(\Omega_j, \mathcal{F}_j)$ be a measurable space. Let $(\Omega, \mathcal{F}) = \left(\prod_{j=0}^{\infty} \Omega_j, \prod_{j=0}^{\infty} \mathcal{F}_j\right)$ denote the product measurable space. An element $\omega \in \Omega$ is identified with a sequence $(\omega_1, \omega_2, \ldots)$, where $\omega_j \in \Omega_j$ for all $j = 1, 2, \ldots$. A set $C \subset \Omega$ is said to be a \textbf{measurable cylinder} if there exists $n \in \mathbb{N}$ and a set $B \subset \Omega_1 \times \ldots \times \Omega_n$ where B belongs to the product σ-field $\mathcal{F}_1 \times \ldots \mathcal{F}_n$, such that

$$C = \{\omega \in \Omega : (\omega_1, \ldots, \omega_n) \in B\}.$$

The cylinder C above is said to have \textbf{base} B, and n is said to be the \textbf{dimension of the base}. The same cylinder can be regarded to have a higher dimensional base. For example, if $B \in \mathcal{F}_1 \times \mathcal{F}_2$, then

$$\{\omega \in \Omega : (\omega_1, \omega_2) \in B\} = \{\omega \in \Omega : (\omega_1, \omega_2, \omega_3) \in B \times \Omega_3\}$$

A set $C \subset \Omega$ is said to be a \textbf{measurable rectangle} if there exists $n \in \mathbb{N}$ and sets $A_j \in \mathcal{F}_j$, $j = 1, \ldots, n$ such that

$$C = \left\{\omega \in \Omega : (\omega_1, \ldots, \omega_n) \in \prod_{j=1}^{n} A_j\right\}.$$

Note that every measurable rectangle is a measurable cylinder. We denote the set of measurable cylinders and measurable rectangles by \mathcal{C} and \mathcal{C}_π respectively (\textbf{Exercise}: Show that \mathcal{C} is an algebra on Ω, \mathcal{C}_π is a π-system on Ω and $\prod_{j=1}^{\infty} \mathcal{F}_j = \sigma(\mathcal{C}) = \sigma(\mathcal{C}_\pi)$).

\textbf{Lemma 0.9.} \textit{Let \mathcal{A} be an algebra on a set Ω and let μ be a finitely additive set function on \mathcal{A}. If μ is continuous from above at the empty set (that is; $C_n \downarrow \emptyset, C_n \in \mathcal{A}$ for all $n \in \mathbb{N}$ implies $\mu(C_n) \downarrow 0$), then μ is countably additive on \mathcal{A}.}
Proof. Let $A_n, n \in \mathbb{N}$ be pairwise disjoint sets such that $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Let $B_n = \bigcup_{i=1}^{n} A_n$ for all n. Then $B_n, A \setminus B_n \in \mathcal{A}$ and $\mu(A) = \mu(B_n) + \mu(A \setminus B_n)$. But $A \setminus B_n \downarrow \emptyset$. Therefore, by hypothesis $\mu(A \setminus B_n) \downarrow 0$, and hence $\mu(B_n) \uparrow \mu(A)$. Therefore

$$\mu(A) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{\infty} \mu(A_i),$$

thus proving countable additivity of μ on \mathcal{A}. \hfill \Box

We now prove an infinite dimensional version of Theorem 0.7.

Theorem 0.10. Let $(\Omega_j, \mathcal{F}_j)$ be measurable spaces for $j \in \mathbb{N}$ and let $(\Omega, \mathcal{F}) = (\prod_{j=1}^{\infty} \Omega_j, \prod_{j=1}^{\infty} \mathcal{F}_j)$. Let μ_1 be a probability measure on $(\Omega_1, \mathcal{F}_1)$, and for each $(\omega_1, \ldots, \omega_j) \in \Omega_1 \times \ldots \times \Omega_j$, let $A \mapsto \mu_{j+1}(\omega_1, \ldots, \omega_j, A)$ be a probability measure on $(\Omega_j, \mathcal{F}_j)$ (for $j \in \mathbb{N}$). Assume that for all $j = 1, \ldots, n-1, A \in \mathcal{F}_{j+1}$, the function $(\omega_1, \ldots, \omega_j) \mapsto \mu_{j+1}(\omega_1, \ldots, \omega_j, A)$ is Borel measurable on $(\Omega_1 \times \ldots \times \Omega_j, \mathcal{F}_1 \times \ldots \times \mathcal{F}_j)$.

For $n \in \mathbb{N}$, let P_n be the unique probability measure on $(\prod_{j=1}^{n} \Omega_j, \prod_{j=1}^{n} \mathcal{F}_j)$ such that for all $A \in \prod_{j=1}^{n} \mathcal{F}_j$,

$$P_n(B) = \int_{\Omega_1} \mu_1(d\omega_1) \int_{\Omega_2} \mu_2(\omega_1, d\omega_2) \cdots \int_{\Omega_{n-1}} \mu_{n-1}(\omega_1, \ldots, \omega_{n-2}, d\omega_{n-1}) \int_{\Omega_n} 1_B(\omega_1, \ldots, \omega_n) \mu_n(\omega_1, \ldots, \omega_{n-1}, d\omega_n). \tag{0.8}$$

Such a measure exists by Theorem 0.7.

Then there exists an unique probability measure P on (Ω, \mathcal{F}) such that for all $n \in \mathbb{N}$, P agrees with P_n on n-dimensional cylinders; that is

$$P \left(\{ \omega \in \Omega : (\omega_1, \ldots, \omega_n) \in B \} \right) = P_n(B), \quad \text{for all } n \in \mathbb{N}, B \in \prod_{i=1}^{n} \mathcal{F}_i. \tag{0.9}$$

Furthermore, if $f \in b(\mathcal{F}_1 \times \ldots \times \mathcal{F}_n)$, then

$$\int_{\Omega} f(\omega_1, \ldots, \omega_n) \, P(d\omega) = \int_{\Omega_1} \mu_1(d\omega_1) \int_{\Omega_2} \mu_2(\omega_1, d\omega_2) \cdots \int_{\Omega_{n-1}} \mu_{n-1}(\omega_1, \ldots, \omega_{n-2}, d\omega_{n-1}) \int_{\Omega_n} f(\omega_1, \ldots, \omega_n) \mu_n(\omega_1, \ldots, \omega_{n-1}, d\omega_n). \tag{0.10}$$

Proof. Let \mathcal{C} denote the algebra of measurable cylinders. Since the same measurable cylinder can have bases of different dimensions, we need to check that P defined by (0.9) is well defined on measurable cylinders. If a cylinder C has two bases $B^n \in \prod_{j=1}^{n} \mathcal{F}_j, B^m \in \prod_{j=1}^{m} \mathcal{F}_j$ for $m < n$, then $\{ \omega \in \Omega : (\omega_1, \ldots, \omega_n) \in B^n \} = \{ \omega \in \Omega : (\omega_1, \ldots, \omega_m) \in B^m \}$. Therefore $B^n = B^m \times \Omega_{m+1} \times \ldots \times \Omega_n$ and $1_{B^n}(\omega_1, \ldots, \omega_m) = 1_{B^m}(\omega_1, \ldots, \omega_m)$ since $A \mapsto \mu_j(\omega_1, \ldots, \omega_{j-1}, A)$ is a probability measure on $(\Omega_j, \mathcal{F}_j)$, it follows from the definition of P_n that $P_n(B^n) = P_m(B^m)$.

7
Since P_n is a probability measure on $(\prod_{j=1}^n \Omega_j, \prod_{j=1}^n \mathcal{F}_j)$ for all $n \in \mathbb{N}$, P is finitely additive on \mathcal{C} (since, any finite collection of cylinders in \mathcal{C} can be viewed to have bases of the same dimension).

By Carathéodory’s extension theorem (Theorem 0.2), it suffices to show that P is countably additive on P. By Lemma 0.9, it suffices to show that for a sequence $B_{n_k} : k \in \mathbb{N}$ of measurable cylinders with dimensions n_k such that $B_n \downarrow \emptyset$, we have $P(B_{n_k}) \downarrow 0$. Without loss of generality, we may assume that $n_k = k$ for all $k \in \mathbb{N}$ (by repeating some cylinders and increasing the dimension by one each time.).

Assume to the contrary that $\lim_{n \to \infty} P(B_n) > 0$. Let B^n denote the basis of B_n for all n. Then by (0.8), for all $n > 1$,

$$P(B_n) = \int_{\Omega_n} g_n^{(1)}(\omega_1) \mu_1(d\omega_1),$$

where

$$g_n^{(1)}(\omega_1) = \int_{\Omega_2} \mu_2(\omega_1, d\omega_2) \cdots \int_{\Omega_{n-1}} \mu_{n-1}(\omega_1, \ldots, \omega_{n-2}, d\omega_{n-1}) \int_{\Omega_n} 1_{B^n}(\omega_1, \ldots, \omega_n) \mu_n(\omega_1, \ldots, \omega_{n-1}, d\omega_n).$$

Since $1_{B^{n+1}}(\omega_1, \ldots, \omega_{n+1}) \leq 1_{B^n}(\omega_1, \ldots, \omega_n)$, $g_n^{(1)}(\omega_1)$ decreases as n increases for all $\omega_1 \in \Omega_1$. Therefore $g_n^{(1)} \to h_1$ for some $h_1 \in b\mathcal{F}_1$. Since $g_n^{(1)} \leq 1$ for all n, by DCT

$$0 < \lim_{n \to \infty} P(B_n) = \int_{\Omega_1} h_1(\omega_1) \mu_1(d\omega_1).$$

Therefore, there exists $\omega'_1 \in \Omega_1$ such that $\omega'_1 \in B^1$. Otherwise, $1_{B^n}(\omega'_1, \omega_2, \ldots, \omega_n) = 0$ for all $n > 1$, $\omega_j \in \Omega_j$, $j = 2, \ldots, n$ (since B_n is a decreasing sequence of sets).

Similarly,

$$g_n^{(1)}(\omega'_1) = \int_{\Omega_2} g_n^{(2)}(\omega_2) \mu_2(\omega'_1, d\omega_2),$$

where

$$g_n^{(2)}(\omega_2) = \int_{\Omega_2} \mu_3(\omega'_1, \omega_2, d\omega_3) \cdots \int_{\Omega_n} 1_{B^n}(\omega'_1, \ldots, \omega_n) \mu_n(\omega'_1, \ldots, \omega_{n-1}, d\omega_n).$$

As above $g_n^{(2)}(\omega_2) \downarrow h_2(\omega_2)$ for all $\omega_2 \in \Omega_2$; hence by DCT

$$0 < h_1(\omega'_1) = \int_{\Omega_2} h_2(\omega_2) \mu_2(\omega'_1, d\omega_2).$$

Therefore, there exists $\omega'_2 \in \Omega_2$ such that $h_2(\omega'_2) > 0$. Arguing as above, $(\omega'_1, \omega'_2) \in B^2$.

Repeating the process inductively, we obtain a sequence of points $\omega'_1, \omega'_2, \ldots$ such that for each n, $(\omega'_1, \omega'_2, \ldots, \omega'_n) \in B^n$. Therefore $(\omega'_1, \omega'_2, \ldots) \in \cap_{n=1}^\infty B_n = \emptyset$, a contradiction. This proves that $P(B_n) \downarrow 0$, and hence P is countably additive on \mathcal{C}. The existence and uniqueness of P follows from Theorem 0.2.
Now we turn to the proof of (0.10). To this end, define
\[
\mathcal{H} = \{ f \in b(\mathcal{F}_1 \times \ldots \times \mathcal{F}_n) : f \text{ satisfies } (0.10) \}.
\]
Let \(B^n \in \mathcal{F}_1 \times \ldots \times \mathcal{F}_n \) and let \(f = 1_{B^n}(\omega_1, \ldots, \omega_n) \). Then \(f = 1_B(\omega) \), where \(B \) is the measurable cylinder in \(\Omega \) with base \(B^n \). In this case (0.10) follows from (0.9) and (0.8).

By linearity of integrals \(\mathcal{H} \) is a vector space. By using MCT, we verify that \(\mathcal{H} \) is closed under increasing bounded limits. Therefore by FMCT, \(\mathcal{H} = b(\mathcal{F}_1 \times \ldots \times \mathcal{F}_n) \). \[\Box\]

As a special case of the above theorem, we obtain a construction of Markov chain, given a transition probability \(p \) and an initial distribution \(\mu \).

Theorem 0.11 (Existence/Construction of Markov chain). Let \((S, \mathcal{S})\) be a measurable space and let \(p \) be a transition probability on \((S, \mathcal{S})\). Let \(\mu_0 \) be a probability measure on \((S, \mathcal{S})\). Let \((\Omega, \mathcal{F}) = (\prod_{j=0}^{\infty} S, \prod_{j=0}^{\infty} \mathcal{S})\) denote the product measurable space. Let \(X_n : (\Omega, \mathcal{F}) \to (S, \mathcal{S}) \) denote the projection on to the \(n \)-th component, \(n \in \mathbb{Z}_+ \) (that is, \(X_n(\omega_0, \omega_1, \ldots) = \omega_n \)). Let \(\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n) \) be the natural filtration associated to the process \(X = \{X_n\}_{n \in \mathbb{Z}_+} \). Then there exists a probability measure \(P \) on \((\Omega, \mathcal{F})\) such that \(X \) is \((\mathcal{F}_n)\)-Markov chain with transition probability \(p \) and initial distribution \(\mu \).

Proof. We will use Theorem 0.10 with indices \(j \in \mathbb{Z}_+ \) (instead of \(j \in \mathbb{N} \)). We let \((\Omega_j, \mu_j) = (S, \mathcal{S})\) for all \(j \in \mathbb{Z}_+ \), \(\mu_0 = \mu \), \(\mu_n(\omega_0, \ldots, \omega_{n-1}, A) = p(\omega_{n-1}, A) \) for all \(A \in \mathcal{S} \) and \(\omega_0, \ldots, \omega_{n-1} \in \mathcal{S} \) for all \(n \in \mathbb{N} \) in Theorem 0.10. Let \(P \) be the probability measure on \((\Omega, \mathcal{F})\) in Theorem 0.10.

Clearly, \(X_n \) is \(\mathcal{F}_n \)-adapted and \((S, \mathcal{S})\)-valued process. It remains to verify the Markov property (0.1). Let \(A \in \mathcal{S} \). Note that \(\omega \mapsto p(X_n(\omega), dy) \) belongs to \(m\mathcal{F}_n \). Therefore, to verify (0.2), it suffices to check
\[
\int_{\Omega} 1_A(X_{n+1}(\omega))1_B(\omega) P(d\omega) = \int p(X_n(\omega), A)1_B(\omega) P(d\omega) \quad \text{for all } B \in \mathcal{F}_n. \quad (0.11)
\]
Let \(\mathcal{L} = \{ B \in \mathcal{F}_n : B \text{ satisfies } (0.11) \} \). Then, \(\mathcal{L} \) is a \(\lambda \)-system (check!). Since \(\mathcal{F}_n \) is generated by the \(\pi \)-system of measurable cylinders in \(\mathcal{F}_n \), by \(\pi \)-\(\lambda \) theorem, it suffices to verify (0.11) for measurable cylinders \(B \) in \(\mathcal{F}_n \).

To this end, let \(B \) denote a measurable cylinder in \(\mathcal{F}_n \); that is \(B = A_0 \times \ldots \times A_n \times S \times S \times \ldots \), where \(A_0, \ldots, A_n \in \mathcal{S} \). Set \(A_{n+1} = A \). Then (0.11), reduces to the claim
\[
P(A_0 \times \ldots \times A_n \times A_{n+1} \times S \times S \times \ldots) = \int_{\Omega} p(X_n(\omega), A_{n+1}) \prod_{j=0}^{n} 1_{A_j}(X_j(\omega)) dP(\omega). \quad (0.12)
\]
By (0.8) and (0.9), we obtain

\[
P(A_0 \times \ldots \times A_n \times A_{n+1} \times S \times S \times \ldots) = \int_S \mu(d\omega_0) \int_S p(\omega_0, d\omega_1) \cdots \int_S p(\omega_{n-1}, d\omega_n) \int_{\prod_{j=0}^{n+1} 1_{A_j}(\omega_j)p(\omega_n, d\omega_{n+1})}.
\]

\[
= \int_S \mu(d\omega_1) \int_S p(\omega_1, d\omega_2) \cdots \int_S p(\omega_n, A_{n+1}) \prod_{j=0}^n 1_{A_j}(\omega_j) p(\omega_{n-1}, d\omega_n) = \int_{\Omega} p(\omega_n, A_{n+1}) \prod_{j=0}^n 1_{A_j}(\omega_j) dP(\omega) \quad \text{(by (0.10))}.
\]

This proves (0.12) and hence (0.11).

Hence the process \((X_n)_{n \in \mathbb{Z}_+}\) satisfies the Markov property with respect to the filtration \((\mathcal{F}_n)_{n \in \mathbb{Z}_+}\) on the probability space \((\Omega, \mathcal{F}, P)\). \qed

References