1. Let $\text{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y)$ denote the covariance of two random variables X, Y.

(a) Show that $\text{cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$.

(b) Show that $\sigma^2(X + Y) = \sigma^2(X) + \sigma^2(Y) + 2 \text{cov}(X,Y)$.

(c) Let $X \sim \text{Unif}[-1,1]$. Show that the random variables X and X^2 are uncorrelated, but not independent.

(d) Let $p(X,Y)$ be the correlation coefficient of X, Y. Show that $|p(X,Y)| \leq 1$.

Hint: Imitate the proof of the Cauchy-Schwarz inequality from linear algebra to show that $|\mathbb{E}(X_1X_2)|^2 \leq \mathbb{E}(X_1)^2 \cdot \mathbb{E}(X_2^2)$ for any two RV’s X_1, X_2. The claim follows from this by a short calculation.

Solution:

(a)

$$
\mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}(XY) - \mu_X \mathbb{E}(Y) - \mu_Y \mathbb{E}(X) + \mu_X \mu_Y \\
= \mathbb{E}(XY) - \mu_X \mu_Y = \text{cov}(X,Y).
$$

(b)

$$
\sigma^2(X + Y) = \mathbb{E}(X + Y - \mu_X + Y - \mu_Y)^2 \\
= \mathbb{E}(X - \mu_X)^2 + \mathbb{E}(Y - \mu_Y)^2 + 2 \mathbb{E}(X - \mu_X)(Y - \mu_Y) \\
= \sigma^2(X) + \sigma^2(Y) + 2 \text{cov}(X,Y).
$$

(c) The density function of X is

$$
f(x) = \begin{cases}
\frac{1}{2} & \text{if } -1 \leq x \leq 1, \\
0 & \text{otherwise}.
\end{cases}
$$

The function $f(x)$ is even, that is, $f(x) = f(-x)$, so

$$
\mathbb{E}(X) = \int_{-\infty}^{\infty} xf(x) \, dx = 0 \quad \text{and} \quad \mathbb{E}(X^3) = \int_{-\infty}^{\infty} x^3 f(x) \, dx = 0.
$$

Therefore

$$
\text{Cov}(X, X^2) = E(X^3) - \mathbb{E}(X)\mathbb{E}(X^2) = 0,
$$

so X and X^2 are uncorrelated. By definition X and X^2 are independent if

$$
\mathbb{P}(X \in A, X^2 \in B) = \mathbb{P}(X \in A)\mathbb{P}(X^2 \in B)
$$

for all (reasonable) sets $A, B \subset \mathbb{R}$, in particular for intervals. For example let $A = B = [0,1/4]$, then

$$
\mathbb{P}(X \in A, X^2 \in A) = \mathbb{P}(X \in A, X \in [-1/2,1/2]) = \mathbb{P}(X \in A) = \frac{1}{8}.
$$

On the other hand side

$$
\mathbb{P}(X \in A)\mathbb{P}(X^2 \in A) = \mathbb{P}(X \in A)\mathbb{P}(X \in [-1/2,1/2]) = \frac{1}{8} \cdot \frac{1}{2} = \frac{1}{16}.
$$

Therefore

$$
\mathbb{P}(X \in A, X^2 \in A) \neq \mathbb{P}(X \in A)\mathbb{P}(X^2 \in A),
$$
so X and X^2 are not independent.

(d) We first show the hint. Set $Z = X_1 - \frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2} X_2$ (if $\mathbb{E}X_2^2 = 0$, then $X_2 = 0$, and the statement is trivial). Then $X_1 = Z + \frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2} X_2$ and

$$
\mathbb{E}(Z X_2) = \mathbb{E}(X_1 X_2) - \frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2} \mathbb{E}X_2^2 = 0.
$$

Therefore,

$$
\mathbb{E}X_1^2 = \mathbb{E}\left(Z + \frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2} X_2 \right)^2
= \mathbb{E}Z^2 + \left(\frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2}\right)^2 \mathbb{E}X_2^2 + 2 \frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2} \mathbb{E}(Z X_2)
= \mathbb{E}Z^2 + \left(\frac{\mathbb{E}(X_1 X_2)}{\mathbb{E}X_2^2}\right)^2 \mathbb{E}X_2^2 \geq \left(\mathbb{E}(X_1 X_2)\right)^2 \mathbb{E}X_2^2
$$

since $\mathbb{E}Z^2 \geq 0$. Rearranging this inequality gives $|\mathbb{E}(X_1 X_2)|^2 \leq \mathbb{E}X_1^2 \mathbb{E}X_2^2$.

Now, since the covariance is $\text{cov}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$ we conclude from the hint that

$$
\text{cov}(X, Y)^2 \leq \mathbb{E}(X - \mu_X)^2 \cdot \mathbb{E}(Y - \mu_Y)^2 = \sigma^2(X) \sigma^2(Y).
$$

This immediately implies that $|p(X, Y)| \leq 1$

2. Suppose that X, Y are discrete random variables with joint p.m.f. as shown below. Calculate $\text{cov}(X, Y)$ and $p(X, Y)$.

<table>
<thead>
<tr>
<th>$X \downarrow Y \rightarrow$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/15</td>
<td>1/15</td>
<td>2/15</td>
<td>1/15</td>
</tr>
<tr>
<td>2</td>
<td>1/10</td>
<td>1/10</td>
<td>1/5</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>1/30</td>
<td>1/30</td>
<td>0</td>
<td>1/10</td>
</tr>
</tbody>
</table>

Solution: The marginal probability mass functions are

$$
p_X(1) = 1/3, \ p_X(2) = 1/2, \ p_X(3) = 1/6
$$

and

$$
p_Y(0) = p_Y(1) = 1/5, \ p_Y(2) = 1/3, \ p_Y(3) = 4/15.
$$

Thus

$$
\mathbb{E}(X) = \frac{11}{6} \quad \text{and} \quad \mathbb{E}(Y) = \frac{5}{3}.
$$

From the table we have

$$
\mathbb{E}(XY) = 1 \cdot \frac{1}{15} + 2 \cdot \frac{2}{15} + 3 \cdot \frac{1}{15} + 2 \cdot \frac{1}{10} + 4 \cdot \frac{1}{5} + 6 \cdot \frac{1}{10} + 3 \cdot \frac{1}{30} + 9 \cdot \frac{1}{10} = \frac{47}{15}.
$$

Thus

$$
\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \frac{47}{15} - \frac{55}{18} = \frac{7}{90}.
$$
From the marginal probability mass functions

\[E(X^2) = \frac{23}{6} \quad \text{and} \quad E(Y^2) = \frac{59}{15}, \]

so

\[\text{Var}(X) = \frac{17}{36} \quad \text{and} \quad \text{Var}(Y) = \frac{52}{45}. \]

We have

\[\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}} \approx 0.1053. \]

3. Let \(X \) be the number of rolls of a fair die until I see the first six. Next, I choose a sample, with replacement, of size \(X \) from an urn with 5 red and 4 green balls. Let \(Y \) be the number of green balls in my sample.

(a) Compute the conditional probability distribution \(p_{Y \mid X}(y \mid x) \).

(b) Compute \(E[Y \mid X] \).

(c) Use your answer from part (b) to compute \(E[Y] \).

Solution:

(a) Given \(X = x \), the distribution of \(Y \) is Bin\((x, 4/9)\), so

\[p_{Y \mid X}(y \mid x) = \begin{cases} \binom{x}{y} \left(\frac{4}{9}\right)^y \left(\frac{5}{9}\right)^{x-y} & y \in \{0, \ldots, x\} \\ 0 & \text{else} \end{cases} \]

(b) Since \(E\text{Bin}(x, 4/9) = \frac{4}{9}x \), we have

\[E(Y \mid X = x) = \frac{4}{9}x. \]

Thus

\[E(Y \mid X) = \frac{4}{9}X. \]

(c) Using that \(X \sim \text{Geom}(1/6) \) we have

\[E(Y) = E(E(Y \mid X)) = E((4/9)X) = \frac{4}{9} \cdot 6 = \frac{8}{3}. \]

4. Assume that the random variables \(X, Y \) have joint density function

\[f(x, y) = \begin{cases} \frac{2x+y}{4} & \text{if } 0 \leq x \leq 1 \text{ and } 0 \leq y \leq 2, \\ 0 & \text{otherwise.} \end{cases} \]

(a) What is the conditional probability density function of \(X \) given that \(Y = 1 \)?

(b) Find the conditional expectation \(E(X \mid Y = 1) \).

Solution: (a) If \(0 \leq y \leq 2 \) then we have

\[f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \frac{y + 1}{4}. \]
Therefore
\[f_{X|Y}(x \mid 1) = \frac{f(x, 1)}{f_Y(1)} = \begin{cases} \frac{2x+1}{2} & \text{if } 0 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases} \]

(b) We have
\[\mathbb{E}(X \mid Y = 1) = \int_{-\infty}^{\infty} xf_{X|Y}(x \mid 1) \, dx = \int_{0}^{1} x \frac{2x+1}{2} \, dx = \left(\frac{x^3}{3} + \frac{x^2}{4} \right) \big|_{0}^{1} = \frac{7}{12}. \]

5. Suppose a laser pointer is located at the origin of your coordinate system, and is pointing toward the vertical line \(L = \{(x, y) \text{ s.t. } x = 1\} \). Suppose that the angle \(X \) between the laser beam and the \(x \) axis is a uniform random variable. Calculate the p.d.f. of the \(Y \) coordinate of the point on \(L \) which the beam points at. **Hint:** Draw a picture and argue that this means that \(X \sim \text{Unif}[-\pi/2, \pi/2] \) and \(Y = \tan X \).

Solution:
The distance between the laser pointer and the line \(L \) is 1, and therefore the tangens of the angle of the beam with the \(x \) axis is exactly the \(Y \) coordinate of the point on \(L \) the laser pointer is pointing at. The angles between the pointer and the \(x \) axis can be in the interval \([-\pi/2, \pi/2]\) in order for the beam to point towards \(L \) (and not away from it). Therefore, \(X \sim \text{Unif}[-\pi/2, \pi/2] \), and \(Y = \tan X \).

We now first compute the c.d.f. of \(Y \), using the fact that tan is a strictly increasing function:
\[F_Y(b) = \mathbb{P}(Y \leq b) = \mathbb{P}(\tan X \leq b) \]
\[= \mathbb{P}(X \leq \arctan b) = \int_{-\pi/2}^{\arctan b} \frac{1}{\pi} \, dx = \frac{\arctan b + \frac{\pi}{2}}{\pi}. \]

We get the p.d.f. by differentiating:
\[f_Y(y) = F_Y'(y) = \frac{1}{\pi} \frac{d}{dy} \arctan y = \frac{1}{\pi} \frac{1}{1 + y^2}. \]
This distribution is called the Cauchy distribution.

6. Let \(X_1, X_2 \sim \text{Exp}(\lambda) \) be independent. Calculate the p.d.f. of \(X_1 + X_2 \).
Solution:
By the convolution formula
\[f_{X_1+X_2}(x) = \int_{-\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(x-x_1) \, dx_1 \]
\[= \int_0^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x-x_1)} \, dx_1 \]
\[= \lambda^2 e^{-\lambda x} \int_0^x 1 \, dx_1 \]
\[= \lambda^2 xe^{-\lambda x}. \]
To find the correct boundaries of integration in the second step, we noticed that
\[f_{X_1}(x_1) = 0 \text{ unless } x_1 \geq 0 \text{ and } f_{X_2}(x-x_1) = 0 \text{ unless } x-x_1 \geq 0 \iff x_1 \leq x. \]The random variable with such a p.d.f. is called the \(\Gamma(2, \lambda) \) RV.

7. Let \(X \sim \text{Poisson}(\lambda) \).
(a) Calculate the moment generating function of \(X \).
(b) Let \(Y \sim \text{Poisson}(\mu) \) be independent of \(X \). Show that \(X + Y \sim \text{Poisson}(\lambda + \mu) \).

Hint: What is the m.g.f. of \(X + Y \)? Remember that the m.g.f. uniquely determines the p.m.f.

Solution:
(a) We have
\[M_X(t) = E(e^{tX}) \]
\[= \sum_{k=0}^{\infty} e^{tk} P(X = k) \]
\[= \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k}{k!} e^{-\lambda} \]
\[= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!} = e^{\lambda(e^t-1)}. \]
(b) Since \(X \) and \(Y \) are independent, we have
\[M_{X+Y}(t) = M_X(t)M_Y(t) = e^{\lambda(e^t-1)}e^{\mu(e^t-1)} = e^{(\lambda+\mu)(e^t-1)}. \]
This is the m.g.f. of a \(\text{Poisson}(\lambda + \mu) \) RV, and since the m.g.f. determines the distribution, we have proven that \(X + Y \sim \text{Poisson}(\lambda + \mu) \)

8*. Let \(X \) be a continuous random variable with p.d.f. \(f(x) \) and \(g : \mathbb{R} \to \mathbb{R} \) be a strictly increasing function. Compute the p.d.f. of \(g(X) \).
Solution:
We compute the c.d.f., using that g is strictly increasing.

$$F_{g(X)}(b) = P(g(X) \leq b) = P(X \leq g^{-1}(b)) = F_X(g^{-1}(b)).$$

Here, $g^{-1}(b)$ is the inverse function of g (e.g. $g^{-1}(b) = \sqrt{b}$ if $g(x) = x^2$, or $g^{-1}(b) = \arctan b$ if $g(x) = \tan x$). Using the chain rule

$$\frac{d}{dx} F_{g(X)}(x) = F_X'(g^{-1}(x)) \cdot \frac{d}{dx} g^{-1}(x)$$

$$= f_X(g^{-1}(x)) \cdot \frac{1}{g'(g^{-1}(x))},$$

where we used a theorem about the derivative of the inverse function.