1. Let $\text{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y)$ denote the covariance of two random variables X,Y.
 (a) Show that $\text{cov}(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$.
 (b) Show that $\sigma^2(X + Y) = \sigma^2(X) + \sigma^2(Y) + 2 \text{cov}(X,Y)$.
 (c) Let $X \sim \text{Unif}[-1,1]$. Show that the random variables X and X^2 are uncorrelated, but not independent.
 (d) Let $p(X,Y)$ be the correlation coefficient of X,Y. Show that $|p(X,Y)| \leq 1$.
 Hint: Imitate the proof of the Cauchy-Schwarz inequality from linear algebra to show that $|\mathbb{E}(X_1X_2)|^2 \leq \mathbb{E}(X_1^2)\cdot\mathbb{E}(X_2^2)$ for any two RV’s X_1, X_2. The claim follows from this by a short calculation.

2. Suppose that X,Y are discrete random variables with joint p.m.f. as shown below. Calculate $\text{cov}(X,Y)$ and $p(X,Y)$.
 \[
 \begin{array}{c|ccc}
 X \downarrow Y & 0 & 1 & 2 & 3 \\
 \hline
 1 & 1/15 & 1/15 & 2/15 & 1/15 \\
 2 & 1/10 & 1/10 & 1/5 & 1/10 \\
 3 & 1/30 & 1/30 & 0 & 1/10 \\
 \end{array}
 \]

3. Let X be the number of rolls of a fair die until I see the first six. Next, I choose a sample, with replacement, of size X from an urn with 5 red and 4 green balls. Let Y be the number of green balls in my sample.
 (a) Compute the conditional probability distribution $p_Y|X(y|x)$.
 (b) Compute $\mathbb{E}[Y|X]$.
 (c) Use your answer from part (b) to compute $\mathbb{E}(Y)$.

4. Assume that the random variables X,Y have joint density function
 \[
 f(x,y) = \begin{cases}
 \frac{2x+y}{4} & \text{if } 0 \leq x \leq 1 \text{ and } 0 \leq y \leq 2, \\
 0 & \text{otherwise.}
 \end{cases}
 \]
 a) What is the conditional probability density function of X given that $Y = 1$?
 b) Find the conditional expectation $\mathbb{E}(X|Y = 1)$.

5. Suppose a laser pointer is located at the origin of your coordinate system, and is pointing toward the vertical line $L = \{(x,y) \text{ s.t. } x = 1\}$. Suppose that the angle X between the laser beam and the x axis is a uniform random variable. Calculate the p.d.f. of the Y coordinate of the point on L which the beam points at. \textit{Hint:} Draw a picture and argue that this means that $X \sim \text{Unif}[-\pi/2,\pi/2]$ and $Y = \tan X$.

6. Let $X_1, X_2 \sim \text{Exp}(\lambda)$ be independent. Calculate the p.d.f. of $X_1 + X_2$.

7. Let $X \sim \text{Poisson}(\lambda)$.
 (a) Calculate the moment generating function of X.
 (b) Let $Y \sim \text{Poisson}(\mu)$ be independent of X. Show that $X + Y \sim \text{Poisson}(\lambda + \mu)$.

Hint: What is the m.g.f. of $X + Y$? Remember that the m.g.f. uniquely determines the p.m.f.

8*. Let X be a continuous random variable with p.d.f. $f(x)$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing function. Compute the p.d.f. of $g(X)$.