1. Suppose X, Y are two discrete RV’s with joint p.m.f. according to the table below.
 (a) Calculate the marginal p.m.f. of X and of Y.
 (b) Calculate $\mathbb{P}(X^2 + Y < 3)$.
 (c) Are X and Y independent?

 \begin{table}[h]
 \centering
 \begin{tabular}{|c|c|c|c|c|}
 \hline
 $X \downarrow Y$ & 0 & 1 & 2 & 3 \\
 \hline
 1/2 & 1/12 & 1/8 & 1/8 & 1/12 \\
 1 & 0 & 1/12 & 1/9 & 1/9 \\
 6 & 1/12 & 1/12 & 0 & 1/9 \\
 \hline
 \end{tabular}
 \caption{The joint p.m.f. of X, Y}
 \end{table}

2. You have two dice, one with three sides labeled 0,1,2 and one with 4 sides, labeled 0,1,2,3. Let X_1 be the outcome of rolling the first die, and X_2 the outcome of rolling the second. The rolls are independent.
 (a) What is the joint p.m.f. of (X_1, X_2)
 (b) Let $Y_1 = X_1 \cdot X_2$ and $Y_2 = \max\{X_1, X_2\}$. Make a table for the joint p.m.f. of (Y_1, Y_2).
 (c) Are Y_1, Y_2 independent?

3. Let $X \sim \text{Exp}(1/2)$, $Y \sim \text{Unif}([2,4])$, and assume that X and Y are independent.
 Calculate $\mathbb{P}(Y - X \geq \frac{1}{2})$.

4. Suppose that X_1, \ldots, X_n are independent continuous random variables that all have the same c.d.f. $F(x)$. Define the random variable
 \[Y = \max\{X_1, \ldots, X_n\}. \]
 Compute the c.d.f. and the p.d.f. of Y. Your answer should be in terms of $F(x)$.
 \textit{Hint:} Express an inequality of the kind $\max\{X_1, \ldots, X_n\} \leq b$ in terms of separate inequalities for each X_i.

5. The random variables X, Y have joint probability density function
 \[f(x, y) = \begin{cases}
 Cy e^{-y-x/y} & \text{if } x > 0 \text{ and } y > 0, \\
 0 & \text{otherwise}.
 \end{cases} \]
 (a) What is the value of C? \textit{Hint:} Integrate with respect to x first.
 (b) Find the marginal probability density function f_Y.
 (c) Compute $\mathbb{P}(X \leq Y^2)$.
 (d)* Compute $\mathbb{P}(X \leq Y^3)$. Your result should be exact, and in terms of the c.d.f. of the standard normal.

6*. Let Z_1 and Z_2 be two points chosen uniformly from the unit disk, independently of each other. Let $d(Z_1, Z_2)$ denote their Euclidean distance, that is, if $z_i = (x_i, y_i)$, then
 \[d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}. \]
 Compute $\mathbb{E}(d(Z_1, Z_2)^2)$.