1. It is known that 4% of the circuit boards from a production line are defective. If a random sample of 150 circuit boards is taken from this production line, use the Poisson approximation of the Binomial r.v. to estimate the probability that the sample contains:
 a) Exactly 2 defective boards.
 b) At least 2 defective boards.

 Solution: The expectation of the number of defective items and of the Poisson distribution should be the same, so \(\lambda = 150 \cdot 0.04 = 6 \). Let \(X \sim \text{Poi}(6) \).

 a) \(P(X = 2) = \frac{6^2}{2!} e^{-6} \approx 4.5\% \).

 b) \(P(X \geq 2) = 1 - P(X = 0) - P(X = 1) = 1 - e^{-6} - 6e^{-6} \approx 98\% \).

2. Let \(X \) be a Poisson random variable with parameter \(\lambda \)
 a) Which \(n = n(\lambda) \geq 0 \) is the most likely value of \(X \), i.e. maximizes \(P(X = n) \)?
 b) Suppose the experiment described by \(X \) has returned the value \(n \geq 0 \). Which parameter \(\lambda = \lambda(n) \) maximizes \(P(X = n) \)?

 Solution: a) Let \(g(n) = P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!} \). Then we have
 \[
 \frac{g(n)}{g(n-1)} = \frac{\lambda}{n}.
 \]
 so \(g(n) > g(n-1) \) if and only if \(n < \lambda \) and \(g(n) = g(n-1) \) if \(n = \lambda \) is integer.
 Therefore the probability \(g(n) \) is maximal if \(n \leq \lambda \leq n + 1 \). If \(\lambda \) is an integer then we have two solutions \(n = \lambda \) and \(n = \lambda - 1 \), otherwise \(n = \lfloor \lambda \rfloor \), where \(\lfloor x \rfloor \) denotes the largest integer not greater than \(x \).

 b) In order to find the monotonicity of the function \(f(\lambda) = P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!} \), we need to check the sign of its derivative. We have
 \[
 f'(\lambda) = \frac{e^{-\lambda} \lambda^{n-1}}{n!} (n - \lambda).
 \]
 This gives that \(f'(x) > 0 \) if \(\lambda < n \) and \(f'(x) < 0 \) if \(\lambda > n \), so \(f \) is increasing on the interval \((0, n]\) and decreasing on \([n, \infty)\). Thus \(f \) has a (global) maximum at \(\lambda = n \).

3. Exercise 3.7.

 Solution: a) We have \(P(a \leq X \leq b) = F(b) - F(a) = 1 \), which is equivalent to \(F(b) = 1 \) and \(F(a) = 0 \). We need to find the maximal \(a \) and minimal \(b \) with the above property, which gives \(a = \sqrt{2} \) and \(b = \sqrt{3} \). Hence the smallest such interval is \([a, b] = [\sqrt{2}, \sqrt{3}]\).

 b) \[
 P(X = 1.6) = P(X \leq 1.6) - P(X < 1.6) \\
 = P(X \leq 1.6) - \lim_{b \to 1.6-} P(X \leq b) \\
 = F(1.6) - \lim_{b \to 1.6-} F(b) = 0.
 \]
2

c) \[P(1 \leq X \leq 3/2) = P(X \leq 3/2) - P(X < 1) \]
\[= P(X \leq 3/2) - \lim_{b \to 1^-} P(X \leq b) \]
\[= F(3/2) - \lim_{b \to 1^-} F(b) \]
\[= F(3/2) - F(1) \]
\[= \left(\frac{9}{4} - 2\right) - 0 = \frac{1}{4}. \]

d) \[f(x) = F'(x) = \begin{cases}
2x & \text{if } \sqrt{2} < x \leq \sqrt{3}, \\
0 & \text{otherwise}.
\end{cases} \]

Note that actually \(F(x) \) is not differentiable at \(x = \sqrt{2} \) and \(\sqrt{3} \), we can define \(f(x) \) arbitrarily there, it won’t change the integrals.

4. a) Define the function
\[f(x) = \begin{cases}
3x - b & x \in [0, 1] \\
0 & \text{otherwise}
\end{cases} \]

Show that there is no value of \(b \) for which this is the p.d.f. of some r.v. \(X \).

b) Let
\[f(x) = \begin{cases}
\sin x & x \in [0, b] \\
0 & \text{otherwise}
\end{cases} \]

Show that there is exactly one value of \(b \) for which this could be the p.d.f. of some r.v. \(X \).

Solution: a) First \(f(x) \geq 0 \) for all \(x \in \mathbb{R} \), so \(b \leq 0 \). We also need \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \), so
\[1 = \int_{0}^{1} (3x - b) \, dx = \frac{3}{2} - b. \]

Thus we have \(b = \frac{1}{2} \) which does not satisfy \(b \leq 0 \), so \(f \) is not a density function for any \(b \).

b) Again, we require \(f(x) \geq 0 \) for all \(x \in \mathbb{R} \), so \(0 \leq b \leq \pi \). We also need \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \), so
\[1 = \int_{0}^{b} \sin x \, dx = 1 - \cos b. \]

Thus \(\cos b = 0 \) and \(b \in [0, \pi] \), so \(b = \pi/2 \).

5. Answer questions (a) - (f) of Exercise 3.31 for the function
\[f(x) = \begin{cases}
 cx^{-3} & x \geq 1 \\
0 & \text{otherwise}
\end{cases} \]

Solution: a) \(f(x) \geq 0 \) is satisfied if \(c \geq 0 \). We need
\[1 = \int_{-\infty}^{\infty} f(x) \, dx = \int_{1}^{\infty} cx^{-3} \, dx = \frac{-cx^{-2}}{2} \bigg|_{1}^{\infty} = \frac{c}{2}. \]
so \(c = 2 \).

b) \(\mathbb{P}(0.5 < X < 1) = \int_{0.5}^{1} f(x) \, dx = 0 \).

c) \(\mathbb{P}(0.5 < X < 2) = \int_{0.5}^{2} f(x) \, dx = \int_{1}^{2} 2x^{-3} \, dx = -x^{-2}\bigg|_{1}^{2} = \frac{3}{4} \).

d) \(\mathbb{P}(2 < X < 4) = \int_{2}^{4} f(x) \, dx = \int_{2}^{4} 2x^{-3} \, dx = -x^{-2}\bigg|_{2}^{4} = \frac{3}{16} \).

e) \[
F_X(x) = \int_{0}^{x} f(t) \, dt = \begin{cases}
1 - x^{-2} & \text{if } x \geq 1, \\
0 & \text{if } x < 1.
\end{cases}
\]

f) \[
\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{1}^{\infty} 2x^{-2} \, dx = -2x^{-1}\bigg|_{1}^{\infty} = 2.
\]

Similarly
\[
\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f(x) \, dx = \int_{1}^{\infty} 2x^{-1} \, dx = 3 \log x\bigg|_{1}^{\infty} = \infty.
\]

Thus
\[
\text{Var}(X) = \infty.
\]

This may seem paradoxical, but it is not: The r.v. with p.d.f. \(2x^{-3} \) is so spread out that it does not have finite variance. Some r.v.’s don’t even have a finite mean! We will learn later in the course how this is to be interpreted.

6. Suppose that a r.v. \(X \) has cumulative distribution function
\[
F(x) = \begin{cases}
\frac{2}{\pi} \arctan x & x > 0 \\
0 & x \leq 0
\end{cases}
\]

Compute \(\mathbb{E}\left(\frac{1}{\sqrt{1 + X^2}} \right) \).

Solution: We compute the density function
\[
f(x) = F'(x) = \begin{cases}
\frac{2}{\pi} \frac{1}{1+x^2} & \text{if } x \geq 0, \\
0 & \text{if } x < 0.
\end{cases}
\]

and therefore
\[
\mathbb{E}\left(\frac{1}{\sqrt{1 + X^2}} \right) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{1 + x^2}} f(x) \, dx = \frac{2}{\pi} \int_{0}^{\infty} \frac{1}{(1+x^2)^{\frac{3}{2}}} \, dx = \frac{2}{\pi} \frac{x}{\sqrt{1+x^2}}\bigg|_{0}^{\infty} = \frac{2}{\pi}.
\]

Solution: We have
\[
\mathbb{P}(Y \leq b) = \mathbb{P}(X \geq c-b) = \begin{cases}
0 & b \leq 0 \\
\int_{c-b}^{c} \frac{1}{c} = \frac{b}{c} & 0 \leq b \leq c \\
1 & c \leq b
\end{cases},
\]

which is the same as \(\mathbb{P}(X \leq b) \). Since the p.d.f. is the derivative of the cdf, also the p.d.f.’s of \(X \) and \(Y \) coincide.

Solution: a) We have $E(X) = 1/\lambda = 1000$, so $X \sim \text{Exp}(1/1000)$. Thus

b) By the no memory property

$$P(X > 2000 | X > 500) = P(X > 1500) = e^{-1500(1/1000)} = e^{-3/2}.$$