Suggested Exercises I:

1. Let \(U = (u_1, \ldots, u_n) \in \mathbb{R}^n \) (viewed as a function on \(\{1, \ldots, n\} \)). Let \(\beta \in \mathbb{R} \). Let \(\mu_\beta \) be the probability vector \((p_1, \ldots, p_n) \) defined by
 \[
 p_i = \frac{e^{-\beta u_i}}{Z(\beta)}
 \]
 where \(Z \) is the normalization factor:
 \[
 Z(\beta) = \sum_j e^{-\beta u_j}.
 \]
 Show that
 \[
 \frac{dE_{\mu_\beta}(U)}{d\beta} = -\text{Variance}_{\mu_\beta}(U).
 \]

2. Show that
 \(I(x) = -\log p(x) \) is the unique function s.t.
 a. \(I(x) \geq 0 \) and \(I(x) \not\equiv 0 \).
 b. \(I(x) = I(p(x)) \).
 c. If \((X,Y)\) are jointly distributed and the events \((X = x)\) and \((Y = y)\) are independent, then \(I(x,y) = I(x) + I(y) \).

3. Recall some of our beloved entropy properties:
 i. \(H(Y|X) \leq H(Y|f(X)) \)
 ii. \(H(X,Y|Z) = H(X|Z) + H(Y|X,Z) \)
 iii. \(H(Y|Z,X) \leq H(Y|Z) \) with equality iff \(X \perp_Z Y \)
 iv. If \(X \perp_Z (Y,W) \), then \(H(Y|W,Z,X) = H(Y|W,Z) \).
 v. \(H(f(X)|Y) \leq H(X|Y) \)
 (these were called properties 8 - 12).
 Prove properties ii - v.

4.
 - When is there equality in property i?
 - Is the converse to property iv true?
 - When is there equality in property v?

5. For a stationary finite-state Markov chain, must the sequence \(\frac{H(X_1, \ldots, X_n)}{n} \) stabilize?

6. Let \(\overline{X} \) be a stationary process. Show that if \(h(\overline{X}) = H(X_2|X_1) \), then \(\overline{X} \) is first-order Markov.

7. Let \(\overline{X} \) be stationary ergodic. For \(\delta < 1/2 \), let \(B^n_\delta \) be any set of sequences of length \(n \) such that for all \(n \), \(\mu(B^n_\delta) > 1 - \delta \). Show that
 \[
 \liminf_{n \to \infty} \frac{\log |B^n_\delta|}{n} \geq h.
 \]