Phase transition for Ising model on \(\mathbb{Z}^2 \), [Pierls argument].

References: [C], [GHM].

Two constructions for measures \(\mu^+_\beta, \mu^-_\beta \), \(\beta = T^{-1} \) inverse temp., as Ben described (and in class).

We will show that there are two regimes: high vs. low temperature.

High temperatures: entropy dominates energy. The interaction between constituent particles is not significant enough to affect macroscopic behaviour of system, so long-range interactions become negligible. So, the center of a large box is largely unaffected by boundary conditions.

Low temperatures: residual effects of boundary conditions are felt. E.g., imagine taking lattice with forced magnetization on boundary of larger and larger sets — even as the distance between boundary and center of the lattice goes \(\to \infty \), residual effect will be seen at the center.

Setup: \(\Lambda \subset \mathbb{Z}^2 \) finite, containing origin. \(|\Lambda| = N \).

Configuration \(\sigma \) on \(\Lambda \) determines spins, \(\pm 1 \), at each site. Denote \(\sigma = (\sigma_1, \ldots, \sigma_N) \in \mathcal{S}_\Lambda = \{ \pm 1 \}^\Lambda \).

Hamiltonian: \(H(\sigma) = -\sum_{<i,j>} \sigma_i \sigma_j \) (no external field).

Probability of configuration \(\sigma \in \mathcal{S}_\Lambda \), \(\sigma \) configs on \(\Lambda \) s.t. \(\sigma|_{\partial\Lambda} = +1 \):

\[P = \mu^+_\beta; \quad Z = \sum_{\sigma \in \mathcal{S}_\Lambda} e^{-\beta H(\sigma)} = \text{partition function} \]
\[P(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)} \]

Label lattice so that \(\sigma_0 \leftrightarrow \) spin at origin.
Then, if we denote
\[\Omega_0 = \{ \text{config} \ \sigma \text{ st } \sigma_0 = -1 \} \subset \Omega, \]
\[P(\sigma_0 = -1) = \frac{1}{Z} \sum_{\sigma \in \Omega_0} e^{-\beta H(\sigma)} \quad (1) \]

We will show (1) is strictly less than \(\frac{1}{Z} \), independently of the size of the lattice \(|\Lambda| \).

Typical configuration for \(\sigma \in \Omega_0 \):
Think of ocean of (+) containing islands of (-).
(Possible that + \[\begin{array}{c} + \\ + \end{array} \] ; no worries)

Every island is surrounded by a **shoreline** := closed path connecting midpoints of adjacent lattice sites;
every segment \((i,j)\) of a shoreline \(\leftrightarrow \sigma_i \sigma_j = -1, \)
ie, separates (+) from (-).
Since \(\sigma_0 = -1 \ \forall \ \sigma \in \Omega_0, \) \(\exists \) shoreline \(S \) around 0.
Call length of \(S \leftrightarrow n(S) \).

Call \(\Omega_S = \{ \sigma \in \Omega_0 : S \text{ is a shoreline for } \sigma \} \).
\[P(\Omega_S) = \frac{1}{Z} \sum_{\sigma \in \Omega_S} e^{-\beta H(\sigma)} \]

\[= \frac{1}{Z} \sum_{\sigma \in \Omega_S} e^{-\beta \sum_{(i,j) \in S} \sigma_i \sigma_j - \sum_{(i,j) \notin S} \sigma_i \sigma_j} \]

\[= \frac{1}{Z} \sum_{\sigma \in \Omega_S} e^{-\beta E_\sigma(S)} \cdot e^{\beta \sum_{(i,j) \notin S} \delta_i \delta_j} \]

\[= \frac{e^{-\beta E_\sigma(S)}}{Z} \sum_{\sigma \in \Omega_S} e^{\beta \sum_{(i,j) \notin S} \delta_i \delta_j} \]

(2)

Now, for \(\sigma \in \Omega_S \), can form another config. \(\sigma' \in \Omega \)
by changing (flipping) all spins inside subregion \(S \).
For fixed \(S \), \(\sigma \mapsto \sigma' \) is injective. Call \(\Omega_S' \) = image of \(\Omega_S \) under this.
Clear that for \((i,j) \notin S \), \(\sigma_i \sigma_j = \sigma'_i \sigma'_j \),
and \(\sigma_i \sigma_j = -1 \) for \((i,j) \in S \) \(\Rightarrow \sigma'_i \sigma'_j = +1 \) for \((i,j) \in S \).

\[\sum_{(i,j) \notin S} \sigma_i \sigma_j = \sum_{(i,j) \notin S} \sigma'_i \sigma'_j = \sum_{(i,j) \notin S} \sigma_i \sigma_j' - \sum_{(i,j) \notin S} \sigma_i \sigma_j' = \sum_{(i,j) \notin S} \delta_i \delta_j' - \langle S \rangle. \]

So, \(\sum_{(i,j) \notin S} \sigma_i \sigma_j' < \sum_{(i,j) \notin S} \sigma_i \sigma_j' \).

Plug into (2).
\[P(\mathcal{S}_S) < e^{-\beta E(n)} \leq e^{\beta E(\sigma)} \leq e^{\beta \underline{E}(\sigma')} \]

\[0 \rightarrow \sigma' \quad 1 \rightarrow \sigma \]

\[= \frac{e^{-\beta E(n)}}{Z} \leq e^{\beta \underline{E}(\sigma')} \]

\[= \frac{e^{-\beta E(n)}}{Z} \leq e^{-\beta H(\sigma')} \]

\[\mathcal{S}_S < \mathcal{S} \quad \leq \frac{e^{-\beta E(n)}}{Z} \leq e^{-\beta H(\sigma)} \]

\[= e^{-\beta E(n)} \quad (3) \]

Let \(\mathcal{S} \) = set of shorelines surrounding 0 in \(\Lambda \).

\[P(\sigma_0 = -1) = \frac{\sum_{\mathcal{S}} P(\mathcal{S}_S)}{\mathcal{S} \in \mathcal{S}} \leq e^{-\beta E(n)} \]

\[\leq \frac{e^{-\beta E(n)}}{Z} \leq s(n) e^{-\beta E(n)} \]

\[s(n) = \# \text{shorelines of length } n \text{ surrounding } 0 \]

So, suffices to bound \(s(n) \).
A shoreline of length \(n \) is contained in a square of side length \(\frac{n}{\sqrt{2}} \).

Let

\[
\begin{align*}
\mathbf{r}(n) &= \text{# paths of a random walk of length } n \text{ originating in a square of side } \frac{n}{\sqrt{2}}. \\
\end{align*}
\]

Every shoreline is closed path of length \(n \); so every starting segment corresponds to a random walk of that length.

\[
\begin{align*}
\Rightarrow \quad n \cdot s(n) \leq r(n) \Rightarrow s(n) &< \frac{1}{n} r(n). \\
\end{align*}
\]

Bound \(r(n) \): \(\left(\frac{n}{\sqrt{2}} \right)^2 = \frac{n^2}{2} \) possible starting positions inside square. At most \(4^n \) possible paths. \(\left(\leq 4 \cdot 3^{n-1} \right. \\
\text{use non-backtrack, no matter how) }
\]

\[
\begin{align*}
\Rightarrow s(n) &< \frac{1}{2} \cdot n \cdot 4^n. \\
\end{align*}
\]

\[
\begin{align*}
\Rightarrow p(\sigma = -1) &< \frac{1}{2} \cdot n \cdot 4^n \cdot e^{-\beta n E} \\
&< \frac{1}{2} \cdot \frac{58}{n} \cdot (4e^{-\beta E})^n. \\
\end{align*}
\]

\[
\begin{align*}
\frac{1}{1-x} &= 1 + x + \ldots \Rightarrow 0 < x^n, |x| < 1. \\
\Rightarrow \quad \frac{x}{(1-x)^2} &= \sum_{n=0}^{\infty} n x^n \quad |x| < 1.
\end{align*}
\]
\[P(\sigma_0 = -1) < \frac{1}{2} \left[\frac{4 e^{-\beta E}}{(1 - 4 e^{-\beta E})^2} \right] \]

\[\chi = (1 - \chi)^2 \text{ has solution } \frac{1}{2} \left(3 \pm \sqrt{5} \right) . \]

\[4 e^{-\beta} = \frac{1}{2} (3 - \sqrt{5}) \Rightarrow \beta \approx 2.35 \]

\(\text{So, for } \beta > 2.35, \ P(\sigma_0 = -1) < \frac{1}{2} \quad (\epsilon = 1) \)

The above bound holds independently of the size of the lattice. So, holds for \(\mu_\beta^+ = \lim_{\Lambda \to \infty} \mu_\beta^+ \Lambda \)

Symmetry shows that for \(\mu_\beta^-(\sigma_0 = +1) < \frac{1}{2} \), hence \(\mu_\beta^- \neq \mu_\beta^+ \) for \(\beta > 2.35 \).

Known: \(\beta_c = \frac{1}{2} \log (1 + \sqrt{2}) \) by Onsager, studying singularities \(\approx 0.441 \)

of "free energy per lattice site", \(F(\beta, E, h) = \lim_{N \to \infty} \frac{1}{N} \log Z(\beta, E, h, N) \).

For \(\beta < \beta_c, \ \mu^+ = \mu^- \).

[GHM] showed, by coupling argument, that if \(\Psi_\beta = \text{measure for Bernoulli site percolation on } \mathbb{Z}^2 \), then for any \(\Delta \subset \Lambda \),

\[||\mu_\beta^+ - \mu_\beta^-||_\Delta \leq \Psi_\beta(\Delta \subset \partial \Lambda) , \]

where \(||\cdot||_\Delta = \sup_{A \in \mathcal{F}_\Delta} |\cdot(A)| \) = total variation norm on \(\mathcal{F}_\Delta = \sigma\text{-alg. of events depending only on spins in } \Delta \).

\[\Psi_\beta(\sigma_x = 1) = \mathbb{P}_x \]

and \(\mathbb{P}(P) = \max_{\gamma \in \partial \mathbb{Z}^2} \| \mu_\gamma^0 - \mu_\gamma^+ \|_{\chi} , \gamma|\text{ boundary conditions} \)

Let \(\Lambda \subset \mathbb{Z}^2 \Rightarrow ||\mu - \mu^-|| \leq \Psi_\beta(\Lambda \subset \partial \infty) \)
By spin-flip symmetry & stochastic monotonicity,
\[\mu_{\beta,x}^+(\sigma_x = 1) - \mu_{\beta,x}^- (\sigma_x = 1) \]
\[= \mu_{\beta,x}^+ (\sigma_x = 1) - \mu_{\beta,x}^- (\sigma_x = 1) \]
\[= \| \nu_{\beta,x}^+ - \nu_{\beta,x}^- \|_{X}. \]

So, enough to check for singletons; if
\[\tanh(4\beta) < p_c \] for site percolation in \(\mathbb{Z}^2 \), know 3! Gibbs

Currently known \(0.556 < p_c < 0.680 \).

So this shows \(p \leq 0.157 \) has unique Gibbs.