A VIEW OF EXTREMALITY IN TERMS OF PROBABILITY KERNELS:
MIXING PROPERTIES OF μ^+ AND μ^- FOR ISING MODEL ON \mathbb{Z}^2

RAIMUNDO BRICEÑO

In these notes we will study the structure of the set of Gibbs measures $\mathcal{G}(\gamma)$ for a given specification γ. For now we have been studying some particular cases of (Gibbsian) specifications, namely the ones induced by a nearest-neighbour (n.n.) interaction potential Φ. This is an important class, where the Ising model on \mathbb{Z}^2 is one of the main examples. By using the idea that the set $\mathcal{G}(\gamma)$ is nothing more than a set of probability measures preserved by a particular family of probability kernels, we will establish properties of the convex set $\mathcal{G}(\gamma)$ and characterize its extreme elements, which will ideally represent an equilibrium state (or phase) of a real system. Using the same formalism, we will also find connections between ergodicity and extremality.

1. Measure kernels

Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be two measurable spaces. A function $\pi : \mathcal{X} \times Y \to [0, \infty]$ is called a (probability) kernel from \mathcal{Y} to \mathcal{X} if:

(i) $\pi(\cdot | y)$ is a (probability) measure on (X, \mathcal{X}) for all $y \in Y$, and

(ii) $\pi(A | \cdot)$ is \mathcal{Y}-measurable for each $A \in \mathcal{X}$.

Example 1.1. Given $\varphi : Y \to X$ measurable, the function $(A, y) \mapsto 1_A \circ \varphi(y)$ is a kernel from \mathcal{Y} to \mathcal{X}.

A kernel π from \mathcal{Y} to \mathcal{X} maps measures μ on (Y, \mathcal{Y}) to measures $\mu\pi$ on (X, \mathcal{X}), where:

$$
\mu\pi(A) := \int d\mu\pi(A | \cdot), \quad \text{for } A \in \mathcal{X}.
$$

Let $f : X \to \mathbb{R}$ be a measurable function. Then $\pi f : Y \to \mathbb{R}$ is a measurable function given by:

$$
\pi f := \pi(\cdot | y) = \int \pi(dx | \cdot) f(x).
$$

On the other hand, if $f \geq 0$, we let $f\pi$ to be the kernel from \mathcal{Y} to \mathcal{X} defined by:

$$
f\pi(A | \cdot) := \pi(f 1_A) = \int_A \pi(dx | \cdot) f(x), \quad \text{for } A \in \mathcal{X}.
$$

If (Z, \mathcal{Z}) is a third measurable space, then the composition $\pi_1 \pi_2$ of a kernel π_1 from \mathcal{Z} to \mathcal{Y} and a kernel π_2 from \mathcal{Y} to \mathcal{X} is a kernel from \mathcal{Z} to \mathcal{X} defined by the formula:

$$
\pi_1 \pi_2(A | z) = \int \pi_1(dy | z) \pi_2(A | y), \quad \text{for } A \in \mathcal{X}, \ z \in \mathcal{Z}.
$$

We will focus on a particular family of probability kernels. Let S be a countable infinite set and (E, \mathcal{E}) any measurable space. (Think of $S = \mathbb{Z}^2$, $E = \{-1, +1\}$ and $\mathcal{E} = 2^E$.) We consider the product space (Ω, \mathcal{F}), given by $\Omega = E^S = \{\omega = (\omega_i)_{i \in S} : \omega_i \in E\}$ and $\mathcal{F} = \mathcal{E}^S$, the product σ-algebra. We denote the set of probability measures on (Ω, \mathcal{F}) by $\mathcal{P}(\Omega, \mathcal{F})$ (the set of random fields).

Consider (Ω, \mathcal{F}) and $\mathcal{B} \subseteq \mathcal{F}$ a sub-σ-algebra. A probability kernel $\pi : \mathcal{F} \times \Omega \to [0, \infty]$ is a proper probability kernel from \mathcal{B} to \mathcal{F} if:

(i) $\pi(\cdot | \omega)$ is a probability measure on (Ω, \mathcal{F}), for all $\omega \in \Omega$,

(ii) $\pi(A | \cdot)$ is \mathcal{B}-measurable, for each $A \in \mathcal{F}$, and

(iii) $\pi(B | \cdot) = 1_B$, for $B \in \mathcal{B}$ (where the word “proper” is coming from).
2. Specifications

Let $S = \{ \Lambda \subset S : 0 < |\Lambda| < \infty \}$ be the set of all non-empty finite subsets of S. We denote $\sigma_i : \Omega \to E$, the projection $\omega \mapsto \omega_i$ and $\sigma_\Lambda : \Omega \to E^\Delta$ the natural extension to subsets $\Lambda \subseteq S$. By definition, F is the smallest σ-algebra on Ω containing the cylinder events $\{ \sigma_\Lambda \in A \}$, for $\Lambda \in S$ and $A \in E^\Lambda$. For each $\Delta \subseteq S$, we consider the σ-algebra F_Δ of all events occurring in Δ and $T_\Lambda = F_{S\setminus \Lambda}$. The tail σ-algebra is defined as:

$$T := \bigcap_{\Lambda \in S} T_\Lambda.$$

Definition 2.1. A specification with parameter set S and state space (E, \mathcal{E}) is a family $\gamma = (\gamma_\Lambda)_{\Lambda \in S}$ of proper probability kernels γ_Λ from T_Λ to F which satisfy the consistency condition $\gamma_\Delta \gamma_\Lambda = \gamma_\Delta$, when $\Lambda \subseteq \Delta$. The random fields in the set:

$$G(\gamma) := \{ \mu \in \mathcal{P}(\Omega, F) : \mu(A|T_\Lambda) = \gamma_\Lambda(A|\cdot) \text{ μ-a.s. for all } A \in F \text{ and } \Lambda \in S \}$$

are then said to be specified or to be admitted by γ.

Remark 1. If π is a proper probability kernel from B to X and $\mu \in \mathcal{P}(X, \mathcal{X})$, then:

$$\mu(A|B) = \pi(A|\cdot) \text{ μ-a.s., for all } A \in \mathcal{X} \iff \mu = \pi.$$

Definition 2.2. An interaction potential is a family $\Phi = (\Phi_\Lambda)_{\Lambda \in S}$ of functions $\Phi_\Lambda : \Omega \to \mathbb{R}$ such that:

(i) For each $\Lambda \in S$, Φ_Λ is F_Λ-measurable.

(ii) For all $\Lambda \in S$ and $\omega \in \Omega$, the Hamiltonian $H_\Lambda^{\Phi}(\omega) := \sum_{A \in S, A \neq \emptyset} \Phi_\Lambda(\omega)$ exists.

Idea (Gibbsian specification): $\gamma_\Lambda^\Phi(\{ \sigma_\Lambda = \xi_\Lambda \}) \propto \exp[-\beta H_\Lambda^{\Phi}(\xi_\Lambda \omega_\Lambda \cdot)]$, where ω represents the frozen “surrounding world”. This is equivalent in the n.n. case to ask conditional probabilities of μ in finite volumes to be proportional to the measures “$\mu_{S, \delta}$” defined in class. The elements of $G(\gamma^\Phi)$ are called Gibbs measures.

3. Extremality

Definition 3.1. An element μ of a convex subset C of any real vector space is said to be extreme in C ($\mu \in \text{ex } C$) if $\mu \neq s\nu + (1-s)\nu'$ for all $0 < s < 1$ and $\nu, \nu' \in C$ with $\nu \neq \nu'$.

Proposition 3.1. Let (Ω, F) be a measurable space, π a probability kernel from F to F, and $\mu \in \mathcal{P}(\Omega, F)$ with $\mu \pi = \mu$. Then the system:

$$\mathcal{I}_\pi(\mu) = \{ A \in F : \pi(A|\cdot) = 1_A \text{ μ-a.s.} \}$$

of all μ-almost surely π-invariant sets is a σ-algebra, and for all measurable $f : \Omega \to [0, \infty]$ we have:

$$(f \mu) \pi = f \mu \iff f \text{ is } \mathcal{I}_\pi(\mu)-measurable.\)$$

Proof. Suppose f is $\mathcal{I}_\pi(\mu)$-measurable. We will show that $(f \mu) \pi = f \mu$. f is the limit of an increasing sequence of $\mathcal{I}_\pi(\mu)$-measurable step functions. Therefore it is sufficient to prove that $(1_A \mu) \pi = 1_A \mu$ for all $A \in \mathcal{I}_\pi(\mu)$. We choose any $B \in F$. Then

$$(1_A \mu) \pi(B) = (1_A \mu) \pi(A \cap B) + (1_A \mu) \pi(B \setminus A) \leq \mu \pi(A \cap B) + \mu((1_A \pi(\Omega \setminus A|\cdot))) = \mu(A \cap B) + \mu(1_{A \Omega \setminus A}) = (1_A \mu)(B).$$

Similarly, $(1_A \mu) \pi(\Omega \setminus B)$. This implies $(1_A \mu) \pi(B) = (1_A \mu)(B)$ because

$$(1_A \mu) \pi(B) + (1_A \mu) \pi(\Omega \setminus B) = \mu(A) = (1_A \mu)(B) + (1_A \mu)(\Omega \setminus B).$$

The proof is thus complete. \square

We will say a probability measure μ is trivial on a σ-algebra \mathcal{A} if $\mu(A) = 0$ or 1, for all $A \in \mathcal{A}$.

2
Corollary 1. Let (Ω, F) be a measurable space, Π a non-empty set of probability kernels from F to F, and
\[\mathcal{P}_\Pi = \{ \mu \in \mathcal{P}(\Omega, F) : \mu \pi = \mu \text{ for all } \pi \in \Pi \} \]
the convex set of all Π-invariant probability measures on (Ω, F). Let $\mu \in \mathcal{P}_\Pi$ be given and $\mathcal{I}_\Pi(\mu) = \bigcap_{\pi \in \Pi} \mathcal{I}_\pi(\mu)$ be the σ-algebra of all μ-almost surely Π-invariant sets. Then $\mu \in \text{ex } \mathcal{P}_\Pi$ if and only if μ is trivial on $\mathcal{I}_\Pi(\mu)$.

Proof. Suppose there exists a set $A \in \mathcal{I}_\Pi(\mu)$ such that $0 < \mu(A) < 1$. Then we may look at the conditional probabilities
\[\nu = \mu(\cdot|A) = f \mu, \quad \nu' = \mu(\cdot|A^c) = f' \mu, \]
where $f = 1_A/\mu(A)$ and $f' = 1_{A^c}/\mu(A^c)$. Clearly, $\nu \neq \nu'$ and $\mu = \mu(A)\nu + (1 - \mu(A))\nu'$. But Proposition 3.1 asserts that $\nu, \nu' \in \mathcal{P}_\Pi$ because f and f' are $\mathcal{I}_\sigma(\mu)$-measurable for all $\pi \in \Pi$. Thus μ is not extreme. \(\square\)

Remark 2. Suppose γ is a specification. Then $\mathcal{I}_\gamma = \mathcal{T}$. If $\mu \in \mathcal{G}(\gamma) = \mathcal{P}_\gamma$, then $\mathcal{I}_\gamma(\mu)$ is the μ-completion of \mathcal{T}.

Proof. If $A \in \mathcal{T}$ then $\gamma_A(A|\cdot) = 1_A$ for all $\Lambda \in \mathcal{S}$ because all γ_A's are proper. Conversely, if $A \in \mathcal{I}_\gamma$ then $A = \{ \gamma_A(A|\cdot) = 1 \} \in \mathcal{T}_\Lambda$ for all $\Lambda \in \mathcal{S}$ and therefore $A \in \mathcal{T}$. \(\square\)

The preceding remark implies in particular that $\mathcal{I}_\gamma(\mu)$ is μ-trivial if and only if \mathcal{T} is μ-trivial.

Theorem 3.2. Let γ be a specification. Then the following conclusions hold.

(a) A Gibbs measure $\mu \in \mathcal{G}(\gamma)$ is extreme in $\mathcal{G}(\gamma)$ if and only if μ is trivial on the tail σ-field \mathcal{T}.
(b) If $\mu \in \mathcal{G}(\gamma)$ and $\nu \in \mathcal{P}(\Omega, F)$ is absolutely continuous with respect to μ then $\nu \in \mathcal{G}(\gamma)$ if and only if $\nu = f \mu$ for some \mathcal{T}-measurable function $f \geq 0$.
(c) Each $\mu \in \mathcal{G}(\gamma)$ is uniquely determined (within $\mathcal{G}(\gamma)$) by its restriction to the tail σ-field \mathcal{T}.
(d) Distinct extreme elements μ, ν of $\mathcal{G}(\gamma)$ are mutually singular on \mathcal{T}, in that there is some $A \in \mathcal{T}$ with $\mu(A) = 1, \nu(A) = 0$.

Idea: A system’s state is described by a suitable extreme element (phase) of $\mathcal{G}(\gamma)$.

- Microscopic quantities: rapid fluctuations, random, consistent with observed empirical distribution of microscopic variables (Gibbs distribution in finite volumes).
- Macroscopic quantities: constant, non-random, tail measurable functions!

Proposition 3.3. For each $\mu \in \mathcal{P}(\Omega, F)$ the following statements are equivalent.

(i) μ is trivial on \mathcal{T}.
(ii) For all cylinder events A (or, equivalently, for all $A \in \mathcal{F}$),
\[\lim_{\Lambda \in \mathcal{S}} \sup_{B \in \mathcal{T}_\Lambda} \|\mu(A \cap B) - \mu(A)\mu(B)\| = 0. \]

Proof. Suppose μ is trivial on \mathcal{T}. Let $A \in \mathcal{F}$ be given. The backward martingale convergence theorem asserts that for each cofinal increasing sequence $(\Lambda_n)_{n \geq 1}$ in \mathcal{S}
\[\mu(A|\mathcal{T}_{\Lambda_n}) \to \mu(A|\mathcal{T}) \]
in the $L^1(\mu)$-sense. As μ is trivial on \mathcal{T}, $\mu(A|\mathcal{T}) = \mu(A)$ μ-a.s. Thus for each $\epsilon > 0$ there is some $\Delta \in \mathcal{S}$ such that:
\[\mu(\|\mu(A|\mathcal{T}_{\Delta}) - \mu(A)\|) < \epsilon. \]

For all $\Delta \subset \Lambda \in \mathcal{S}$ we have:
\[\sup_{B \in \mathcal{T}_{\Delta}} |\mu(A \cap B) - \mu(A)\mu(B)| \leq \sup_{B \in \mathcal{T}_{\Delta}} \left| \int_B d\mu(A|\mathcal{T}_{\Delta}) - \mu(A) \right| \leq \mu(\|\mu(A|\mathcal{T}_{\Delta}) - \mu(A)\|) < \epsilon. \]

This proves (ii). \(\square\)
4. Ergodic random fields

Fix $S = \mathbb{Z}^d$, the d-dimensional integer lattice and consider Θ the shift group. Then:

$$\mathcal{P}_\Theta(\Omega, \mathcal{F}) = \{\mu \in \mathcal{P}(\Omega, \mathcal{F}) : \theta_i(\mu) = \mu \text{ for all } i \in S\},$$

is the set of shift-invariant random fields on \mathbb{Z}^d (which is always non-empty). We will consider the σ-algebra

$$\mathcal{I}_\Theta = \{A \in \mathcal{F} : \theta_i A = A \text{ for all } i \in S\}$$

of all shift-invariant events.

Remark 3.

1. An \mathcal{F}-measurable function $f : \Omega \to \mathbb{R}$ is \mathcal{I}_Θ-measurable if and only if f is invariant, in that $f \circ \theta_i = f$, for all $i \in S$.
2. For each $\mu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$, the σ-algebra

$$\mathcal{I}_\Theta(\mu) = \{A \in \mathcal{F} : 1_A \circ \theta_i = 1_A \text{ } \mu\text{-a.s. for all } i \in S\}$$

of all μ-almost surely invariant events is the μ-completion of \mathcal{I}_Θ.

We can see the parallel between $\mathcal{G}(\gamma)$ and \mathcal{T}, and $\mathcal{P}_\Theta(\Omega, \mathcal{F})$ and \mathcal{I}_Θ by defining the family of probability kernels $\Pi = \{\hat{\theta}_i : i \in S\}$ from \mathcal{F} to \mathcal{F} given by:

$$\hat{\theta}_i(A|\omega) = 1_A(\theta_i \omega),$$

for $i \in S, A \in \mathcal{F}, \omega \in \Omega$.

Theorem 4.1.

1. A probability measure $\mu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$ is extreme in $\mathcal{P}_\Theta(\Omega, \mathcal{F})$ if and only if μ is trivial on the invariant σ-algebra \mathcal{I}_Θ.
2. Suppose $\mu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$ and $\nu \in \mathcal{P}(\Omega, \mathcal{F})$ is absolutely continuous relative to μ. Then $\nu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$ if and only if $\nu = f \mu$ for some \mathcal{I}_Θ-measurable function f.
3. Each $\mu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$ is uniquely determined (within $\mathcal{P}_\Theta(\Omega, \mathcal{F})$) by its restriction to \mathcal{I}_Θ.
4. Distinct probability measures $\mu, \nu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$ are mutually singular on \mathcal{I}_Θ, in that there exists an $A \in \mathcal{I}_\Theta$ such that $\mu(A) = 1$ and $\nu(A) = 0$.

Notice the similarity between Theorem 4.1 with Theorem 3.2.

Proposition 4.2. If $\mu \in \text{ex } \mathcal{G}(\gamma) \cap \mathcal{P}_\Theta(\Omega, \mathcal{F})$, then $\mu \in \text{ex } \mathcal{P}_\Theta(\Omega, \mathcal{F})$.

Proof. If $\mu \in \text{ex } \mathcal{G}(\gamma)$, then for all cylinder events A, $\lim_{n \to \infty} \sup_{B \in \mathcal{T}_n} \mu(A \cap B) = \mu(A \mu(B)) = 0$. Let A, C be two cylinder events. W.l.o.g., consider $A, C \in \mathcal{F}_\Lambda N$, for some N. It suffices to prove that:

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N} : \|i\|_{\infty} \geq n_0 \implies |\mu(A \cap B) - \mu(A)\mu(B)| < \epsilon.$$

Let m be such that $|\mu(A \cap B) - \mu(A)\mu(B)| < \epsilon$, for all $B \in \mathcal{T}_m$. Taking $n_0 = m + (2N + 1)$, we have that if $\|i\|_{\infty} \geq n_0$, then $\theta_i C \in \mathcal{T}_m$, so:

$$\epsilon > |\mu(A \cap \theta_i C) - \mu(A)\mu(\theta_i C)| = |\mu(A \cap \theta_i C) - \mu(A)\mu(C)|,$$

since $\mu \in \mathcal{P}_\Theta(\Omega, \mathcal{F})$.

\[\square \]

Corollary 2. μ^+ and μ^- are strong mixing.

Proof. From Ben’s talk we know that:

$$\mu_\Lambda \leq \mu_\Lambda^+ \leq \mu_\Lambda^+$$

Taking the mean $\int \mu(d\eta)$ in the previous equation, we obtain that $\mu_\Lambda^+ \leq \mu \leq \mu_\Lambda^+$ and since stochastic domination is preserved under weak limits, we end up with:

$$\mu^- \leq \mu \leq \mu^+$$
when μ is any Ising-model Gibbs measure for fixed β and h. On the one hand, this shows that μ^- and μ^+ are extremal. If $\mu^+ = s\mu_1 + (1-s)\mu_2$, for $\mu_1 \neq \mu_2$ and $0 < s < 1$, there must exist an increasing event A such that $\mu_1(A) \neq \mu_2(A)$. W.l.o.g., we can assume that $\mu_1(A) < \mu_2(A)$. Then:

$$\mu^+(A) = s\mu_1(A) + (1-s)\mu_2(A) < s\mu_2(A) + (1-s)\mu_2(A) = \mu_2(A),$$

which this is a contradiction with the fact that $\mu_2 \leq \mu^+$. Since μ^- and μ^+ are also shift-invariant, both must be strong mixing (in particular, ergodic).

Theorem 4.3 (Aizenman-Higuchi, 1980). For the Ising model on \mathbb{Z}^2 with no external field and inverse temperature $\beta > \beta_c$, μ^+ and μ^- are the only phases, and any other Gibbs measure is a mixture of these two.

References
