Lecture 1:
Discuss course outline and pass out sign-up sheet
NOT a full course in any one of the four subjects.
Course focuses on ideas in statistical mechanics imported to ergodic theory.

Pre-reqs: functional analysis: L^p spaces, duality between measures and continuous functions, some fixed point theorems.

Evaluation: Two problem sets (not to be turned in but to be presented by students in review sessions) and a talk on topic of your choice.

Don’t worry about diff, geom. for topic 4.
Notes will be posted.
Course time?

ENTROPY:
Defn: The entropy of a probability vector $\overline{p} = (p_1, \ldots, p_n)$ is

$$H(\overline{p}) := - \sum_{i=1}^{n} p_i \log p_i$$

Base of log is irrelevant, just changes by a multiplicative constant; ergodic theory assumes base is e (information theory assumes base is 2).

We take: $0 \log 0 = 0$, since $\lim_{x \to 0} x \log x = 0$

Prop:
0) $H(\overline{p}) \geq 0$
1) $H(\overline{p}) = 0$ iff \overline{p} is deterministic, i.e., for some unique i, $p_i = 1$.
2) $H(\overline{p})$ is continuous and strictly concave
3) $H(\bar{p}) \leq \log n$ with equality iff \bar{p} is uniform, i.e., $\bar{p} = (1/n, \ldots, 1/n)$

Proof: $H(\bar{p}) = \sum_{i=1}^{n} f(p_i)$ where $f(x) := -x \log x$,
0): $f(x) \geq 0$ on $[0, 1]$.
1): $f(x) = 0$ iff $x = 0$ or 1.
2): $f(x)$ is continuous and strictly concave since $f''(x) = -1/x < 0$.
3): Apply Jensen to f:

$$(1/n)H(\bar{p}) = \sum_{i=1}^{n} (1/n)f(p_i) \leq f(\sum_{i=1}^{n} (1/n)p_i) = f(1/n) = \frac{\log n}{n}$$

So,

$$H(\bar{p}) \leq \log(n)$$

with equality if $p_i = 1/n$ (and only if by strict concavity). □

Another viewpoint:

Entropy of a random variable X with finite range $\{x_1, \ldots, x_n\}$: $X \sim p(x)$: i.e., $p_i = p(X = x_i)$:

$$H(X) := H(\bar{p})$$

where $\bar{p} = (p_1, \ldots, p_n)$

Note: $H(X)$ does not depend on values of X, but only on its distribution \bar{p}.

Intuitive meaning: $H(X)$ represents

— uncertainty in outcomes of X
— information gained in revealing an outcome of X.
— degree of randomness or disorder of X
Lecture 2:
Recall: For a probability vector \(\vec{p} = (p_1, \ldots, p_n) \),

\[
H(\vec{p}) := -\sum_{i=1}^{n} p_i \log p_i
\]

Subject to some simple natural axioms, there is really only one choice for \(H \) (up to the base of the logarithm).

Can also define entropy for countable state probability vectors and, more generally continuous-valued probability distributions, but not in this course.

STATISTICAL MECHANICS: Boltzmann, Gibbs,

Ideal gas

Micro-state: physical state of system at a given time, e.g., positions and momenta of all particles or clustering of such vectors

Macro-state: probability distribution on set of micro-states

Laws of Thermodynamics:
- 1st law of thermo: without any external influences, energy of macro-state is fixed
- 2nd law of thermo: the macro-state tends to a state of maximal disorder, i.e., maximum entropy, subjected to fixed energy; such a state is called an “equilibrium state”. In an equilibrium state there are no macroscopic changes but the micro-states can evolve.

TRY to make this precise:

Let \(\{s_1, \ldots, s_n\} \) be the collection of micro-states.
Let \(u_i = U(s_i) \) be the energy of \(s_i \) (here, \(U \) is the energy function)
Let \(E^* \) be a fixed value of energy of the system.
FIND
\[\arg \max_{E_{\bar{U}}=E^*} H(\bar{p}) \]

Constrained optimization problem:
Maximize \(H(\bar{p}) \) subject to
\[\sum_i u_i p_i = E^* \]
\[\sum_i p_i = 1 \]
\[p_i \geq 0. \]

Apply Lagrange multipliers:
\[\text{grad } H = \beta U + \lambda 1 \] (viewed as vector equation)
\[- \log p_i - 1 = \beta u_i + \lambda \]
(assuming base = \(e \))

Solution:
\[p_i = ce^{-\beta u_i} = \frac{e^{-\beta u_i}}{Z(\beta)} \]

where \(Z \) is the normalization factor:
\[Z(\beta) = \sum_j e^{-\beta u_j} \]

Call this prob dist: \(\mu_\beta \). □

A probability distribution of the form \(\mu_\beta \) above is called a Gibbs state – defined only by thermodynamics quantities \(U \) and \(\beta \). So, every equilibrium state is an (explicit) Gibbs state.

Can show that there is a unique \(\beta = \beta^* \in (-\infty, \infty) \) such that
\[E_{\mu_{\beta^*}}(U) = E^* \]
and this choice uniquely achieves global max (assuming that \(\min U < E^* < \max U \)):
Onto:
\[\lim_{\beta \to +\infty} E_{\mu_\beta}(U) = \min U \]
\[\lim_{\beta \to -\infty} E_{\mu_\beta}(U) = \max U \]

1-1: Compute \(\frac{dE_{\mu_\beta}(U)}{d\beta} = -\text{Var}(\mu_\beta) < 0 \)

Observe:
\[H(\mu_{\beta^*}) = -\sum_i p_i \log \frac{e^{-\beta^* u_i}}{Z(\beta)} = \log Z(\beta^*) + \beta^* E_{\mu_{\beta^*}}(U). \]

Re-write:
\[(-1/\beta^*) \log Z(\beta^*) = E_{\mu_{\beta^*}}(U) - (1/\beta^*)H(\mu_{\beta^*}) \]

In stat. mech., interpreted as “free energy” = “internal energy - (temperature)(entropy)”

A normalization factor \(Z(\beta^*) \) and a Lagrange multiplier \(\beta^* \) have physical meaning.

A goal of this course: to show that these ideas hold in great generality, with general defns of equilibrium state and Gibbs state.

ERGODIC THEORY:

Defn: A measure-preserving transformation (MPT) on a probability space \((M, \mathcal{A}, \mu)\) is map \(T : M \rightarrow M \) which is measurable and measure-preserving, i.e.,

For \(A \in \mathcal{A} \), \(T^{-1}(A) \in \mathcal{A} \) and \(\mu(T^{-1}(A)) = \mu(A) \).

Example 1: Doubling map (w.r.t. normalized Lebesgue measure on the unit interval)
\[M = [0, 1), \mathcal{A} = \text{Borel } \sigma\text{-algebra, } \mu = \text{Lebesgue measure} \]
\[T(x) = 2x \mod 1 \]

Draw graph, which has two pieces of slope 2:
Inverse image of an interval I is the union of two intervals each with length $(1/2)\ell(I)$.

Note: T would not be an MPT if we required $\mu(A) = \mu(TA)$.

(on the circle, the map is $z \mapsto z^2$)

Defn: An Invertible MPT (IMPT) is an MPT T which is a bijection a.e. and T^{-1} is an MPT.

Example 2: Circle rotation (w.r.t. normalized Lebesgue measure on the circle)

$M : [0, 2\pi)$ with normalized Lebesgue measure

$T_\alpha(\theta) = \theta + \alpha \mod 2\pi, \alpha \in M$.

Graph has slope 1.

MPT because Lebesgue measure is translation invariant.

Can also be viewed as map from circle to itself (the map is $z \mapsto e^{i\alpha}z$)

More examples soon.

Why measure is required to be preserved under inverse images.

Proposition: T is an MPT iff $\int f \circ T d\mu = \int f d\mu$ for all $f \in L^1$.

Proof:

If: Apply to $f = \chi_A, A \in \mathcal{A}$ and note that $\chi_A \circ T = \chi_{T^{-1}(A)}$:

$$\mu(T^{-1}(A)) = \int \chi_{T^{-1}(A)} d\mu = \int \chi_A \circ T d\mu = \int \chi_A d\mu = \mu(A).$$

Only If: We have $\int \phi \circ T d\mu = \int \phi d\mu$ for all simple ϕ.

By splitting f into positive and negative parts, we may assume $f \geq 0$.
There exists a monotone increasing sequence of simple functions \(\phi_n \uparrow f \) and thus \(\phi_n \circ T \uparrow f \circ T \).

\[
\int f \circ T \, d\mu = \lim \int \phi_n \circ T \, d\mu = \lim \int \phi_n \, d\mu = \int f \, d\mu. \quad \square
\]
Lecture 3:
Will post lectures at the end of each week.

Will post a running list of exercises (for review session in early February).

Recall Proposition: T is an MPT iff $\int f \circ T \, d\mu = \int f \, d\mu$ for all $f \in L^1$.

Remark: same result holds for L^p for all $1 \leq p \leq \infty$ since on a probability space $L^p \subset L^1$:

$$\int |f| \, d\mu = \int_{|f| \leq 1} |f| \, d\mu + \int_{|f| > 1} |f| \, d\mu \leq 1 + \int |f|^p \, d\mu$$

Allows to define a unitary operator $U_p : L^p \to L^p$ by $f \mapsto f \circ T$ (of special interest is $p = 2$).

Can verify MP on a small, concrete sub-collection of \mathcal{A}:

Defn: A semi-algebra \mathcal{B} on a set M is a collection of sets s.t.

1. $\emptyset, M \in \mathcal{B}$

2. \mathcal{B} is closed under finite intersections

3. for $B \in \mathcal{B}$, B^c is a finite disjoint union of elements of \mathcal{B}.

Note: this is a weaker concept than an algebra

Examples:

- Intervals in \mathbb{R},

- (literal) rectangles in \mathbb{R}^2

- cylinder sets $F^{Z^+} := \{x_0 x_1 x_2 \cdots : x_i \in F\}$ (F is a finite alphabet):

$$A = \{x \in F^{Z^+} : x_{i_1} = a_1 \ldots x_{i_k} = a_k\}$$
Defn: A semi-algebra \mathcal{B} generates a σ-algebra \mathcal{A} if \mathcal{A} is the smallest σ-algebra containing \mathcal{B}.

Examples: Borel sets in \mathbb{R}, \mathbb{R}^2 and Borel sets in the product σ-algebras F^Z or $F^Z := \{\ldots x_{-2}x_{-1}x_0x_1x_2 \ldots : x_i \in F\}$.

Theorem: Let \mathcal{B} be a generating semi-algebra for \mathcal{A}. Then T is MPT iff for all $B \in \mathcal{B}$, $T^{-1}(B) \in \mathcal{A}$ and $\mu(T^{-1}(B)) = \mu(B)$

Proof:
Only if: obvious
If: argue using monotone class lemma:
Let

$$\mathcal{C} = \{A \in \mathcal{A} : T^{-1}(A) \in \mathcal{A} \text{ and } \mu(T^{-1}(A)) = \mu(A)\}$$

Then \mathcal{C} contains \mathcal{B} and hence the algebra generated by \mathcal{B} (the algebra is the set of all finite disjoint unions of els. of \mathcal{B}; it is a algebra because it is closed under finite intersections and complements)

And \mathcal{C} is a monotone class, (i.e., closed under countable increasing sequence of s sets and countable decreasing sequences of sets).

Then \mathcal{C} contains \mathcal{A}, by Monotone class lemma. □

Examples: Check MPT on semi-algebra:
1. Doubling map: check on intervals
2. Rotation on the circle: check on intervals
3. Baker’s transformation

M : unit square with Lebesgue measure

$T(x, y) = (2x \mod 1, (1/2)y)$ if $0 \leq x < 1/2$

$T(x, y) = (2x \mod 1, (1/2)y + 1/2)$ if $1/2 \leq x < 1$
Draw inverse image of a rectangle contained in bottom or top. Inverse image has half the width and twice the height. If a rectangle intersects top and bottom, then split it into top part and bottom part.

4. One-sided stationary process (finite range) e.g., iid or stationary Markov $M = F^{\mathbb{Z}^+}$ (F is a finite alphabet)

\mathcal{A}: product σ-algebra using discrete σ-algebra on F. for cylinder set

$$A = \{x \in M : x_{i_1} = a_1 \ldots x_{i_k} = a_k\}$$

define

$$\mu(A) := p(X_{i_1} = a_1 \ldots X_{i_k} = a_k)$$

where p is law of process. Extend μ to product sigma-algebra.

$T := \sigma$, the left shift map: $\sigma(x)_i = x_{i+1}$.

$$\sigma^{-1}(A) = \{x \in M : x_{i_1+1} = a_1 \ldots x_{i_k+1} = a_k\}$$

$$\mu(\sigma^{-1}(A)) = \mu(A), \text{ by stationarity (in fact, stationarity of the process is equivalent to measure-preserving of } \sigma)$$

Note that sometimes $\mu(\sigma(A)) \neq \mu(A)$, e.g.,

$$A = \{x : x_0 = 1\}, \quad \sigma(A) = M, \text{ entire space.}$$

falls off cliff

5. Two-sided stationary process (finite range): processes on \mathbb{Z}, instead of \mathbb{Z}^+. $M = F^{\mathbb{Z}}$

$T := \sigma$, the left shift map: $\sigma(x)_i = x_{i+1}$.

Later will study processes on \mathbb{Z}^d and \mathbb{Z}^d_\pm.
Poincare Recurrence Theorem (1890) ("Every MPT is recurrent"): Let T be an MPT and $\mu(A) > 0$. Then a.e. $x \in A$ returns to A infinitely often, i.e., for a.e. $x \in A$, there are infinitely many $n > 0$ s.t. $T^n(x) \in A$.

Proof:

Lemma: There exists $n > 0$ such that $\mu(T^{-n}(A) \cap A) > 0$.

Proof: If not, we claim that $\{T^{-n}(A)\}_{n=0}^\infty$ are pairwise measure disjoint (i.e., for $n \neq m$, $\mu(T^{-n}(A) \cap T^{-m}(A)) = 0$); this follows because (assuming $n > m$):

$$T^{-n}(A) \cap T^{-m}(A) = T^{-m}(T^{-(n-m)}(A) \cap A)$$

So,

$$\mu(T^{-n}(A) \cap T^{-m}(A)) = 0.$$

Thus, $\mu(\bigcup_{n=0}^\infty T^{-n}(A)) = \infty$. □

Let G be the set of points in A which do not visit A infinitely often. We want to show that $\mu(G) = 0$.

Let G_n be the set of points in A that visit A exactly n times in the future.

Then G is the disjoint union of the G_n and so it suffices to show that $\mu(G_n) = 0$.

If $\mu(G_n) > 0$, then by Lemma, there exists $n' > 0$ s.t. $\mu((T^{-n'}(G_n) \cap G_n)) > 0$.

If x is in this intersection, then $x \in G_n$ and $T^{n'}(x) \in G_n$ and so x visits A at least $n + 1$ times, a contradiction to defn. of G_n. □