Two types of "chaotic" behaviour

Ex. Regional: Positive Entropy.

Everywhere chaos:
- Mixing
- K-system (positive entropy for any partition)

Recall Let \(\Sigma_+ \) = sets of positive measure

Mixing:

\[\forall A, B \in \Sigma_+ \]

\[\lim_{n \to \infty} \mu(A \cap T^{-n} B) = \mu(A) \mu(B) \]

Def: 3-mixing \(\forall A, B, C \in \Sigma_+ \)

\[\lim_{n_1, n_2 \to \infty} \mu(A \cap T^{-n_1} B \cap T^{-n_2} C) = \mu(A) \mu(B) \mu(C) \]

Question: Does mixing imply 3-mixing?

Rokhlin 1949

1D-unknown 2D-counterexample.
Ledrappier's dot example:

\[
\begin{array}{c|c|c}
\text{a} & \text{b} & \text{c} \\
\hline
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{array}
\] \text{ mod } 2

Measure \(\mu \) defined by \(\text{i.i.d.} \) on the \(T \)

- Three independent regions \(S \)

Proof by picture

Let \(C, C' \) be cylinder sets if they are sufficiently far they can be
shifted to be in two different regions of (which are independent!)

[stronger than mixing!]

On the other hand.

Lemma

\[a \quad \text{mod} \quad 2 \]

\[b \quad c \]

\[2^n \]

\[a + b + c = 0 \quad \text{mod} \quad 2 \]

\[n = 0 \quad \text{hypothesis} \]

\[n = 1 \]

\[a \]

\[x, y, z \]

\[a + x + y = 0 \]

\[a + b + x = 0 \]

\[\beta + y + c = 0 \]

\[a + b + c = 0 \]

\[n = 2 \]

\[a \quad b \quad c \]

\[\text{Continue by induction} \ldots \]
Product system.

\(T \times T : X^2 \to X^2 \)

\(T \times T (x, y) = (Tx, Ty) \).

Example.

\[T \]

\[\begin{array}{c}
 x \rightarrow y \\
 x = y
\end{array} \]

\(M(x) = M(y) = 1/2 \)

Product

\[\begin{array}{c}
 (x, y) \rightarrow \text{gap} \\
 (x, x) \rightarrow (y, x)
\end{array} \]

\(T \times T (x, x) = (y, y) \)

Not Ergodic

\(T \times T \) ergodic implies "mixing" of some form.

- Proposition: \(T \) is mixing iff \(T \times T \) is mixing.

Proof: Let \(A, B, C, D \in \Sigma^+ \).

- \(\lim M(T^{-n} A \land B) = M(A) M(B) \)
- \(\lim M(T^{-n} C \land D) = M(C) M(D) \)
\[
\lim_{n \to \infty} M X M (T^n A \cap B) = M(\mathcal{A}) M(\mathcal{B}) M(\mathcal{C}) M(\mathcal{D}) = M X M (A X C) \cdot M X M (B X D).
\]

Since rectangles form a semi-generating semi-algebra, we conclude that \(T X T\) is mixing.

Corollary: If \(T\) is mixing, then \(T X T X T \ldots T\) is mixing.

Recall: Density on \(Z\).

We will focus on invertible MFT's, i.e., \(Z\)-systems.
Actually the result holds for any MPT not just mixing.

\[\text{Thm} \]
Erdős' conjecture. (1936)

Let \(J \subseteq \mathbb{Z} \) be a set with positive upper density. Then \(J \) contains arbitrarily large arithmetic progressions, \((n, n + r, \ldots, (k-1)r) \).

* Proved by Szemerédi 1975.

* 1976 Ergodic proof by Furstenberg.

Th. Multiple recurrence implies Szemerédi's theorem.
Using the previous proposition and Van der Corput's Lemma.

It can be shown that

If \((X,\mathcal{M},\mu,\tau)\) is mixing then

for any \(A_1, A_2, \ldots, A_k\)

there exists \(J \in \mathbb{Z}^\omega\) with zero density such that

\[
\lim_{n \to \infty} \mu(\bigcap A_1 \bigcap T^{n} A_2 \bigcap \cdots \bigcap T^{n(k-1)} A_k) \\

n \notin J \\
= \mu(A_1) \mu(A_2) \cdots \mu(A_k).
\]

Which is some form of higher order mixing.

Corollary (Recurrent Theorem for mixing)

Let \(k \in \mathbb{Z}^\omega\) and \((X,\mathcal{M},\mu,\tau)\) mixing, and \(E \in \mathcal{E} \subset \mathbb{E}^+\)

there exists \(r > 0\) such that

\[
E \cap T^{-r} E \cap \cdots \cap T^{-(k-1)r} E \text{ is non-empty.}
\]
Proof

Let $J \subset \mathbb{Z}$ with positive upper density. Let $x \in \sigma^J \mathbb{Z}$ be such that $x_i = 1$ iff $i \in J$.

$$X = \sigma^J \mathbb{Z}$$ be a shift space.

$$E = \{ x_0 = 1 \}$$ cylinder set. C_X

If there exists an invariant measure μ such that $\mu(E) > 0$ then by multiple recurrence for every $k \in \mathbb{N}

$$S^k F = E \cap \sigma^k E \ldots \cap \sigma^{k-1} E \neq \emptyset$$

There exists m such that

$$\sigma^m x \in F \text{, hence } J$$ contains a k-arithmetic progression.