Chapter 2

Some basic ergodic theory

Ergodic theory deals with groups or semigroups of measure preserving transfor-
mations T on a probability space (X, B, #). In later sections X will be a compact
metric space endowed with its Borel o-algebra B, but most of the theory presented
in this chapter is independent of this topological background,

We start with a section on Birkhoff’s ergodic theorem, which generalizes the
classical formulation from Theorem 1.4.2 to arbitrary measure preserving Z4 -
actions. In order to characterize those systems for which the limit in the ergodic
theorem is constant, we introduce the concept of ergodicity in Section 2.2 and dis-
cuss the related notions of weak mixing and mixing. In Section 2.3 we show how
an arbitrary measure preserving system can be decomposed into ergodic compo-
nents. We finish this chapter with two brief sections on return times and return
maps and on factors and extensions. Both may be skipped on a first reading, be-
cause we make no explicit use of them except in Chapter 6.

There are several textbooks on general ergodic theory which the reader might
wish to consult for further information, for example {60], [13], [46], [37].

2.1 Birkhoff’s ergodic theorem

The basic objects of ergodic theory are measure preserving dynamical systems,
a notion that embraces as special cases lattice systems discussed at the end of
Section 1.2 and the interval maps from Section 1.4. In this section we state and
prove Birkhoff’s ergodic theorem for Z% -actions that applies to such systems.

2.1.1 Definition A measure preserving dynamical system (m.p.d.s.) is a quadruple
(X, B, i, T) consisting of

2) a probability space (X, B, p) and

b) a B-measurable action T = (I9 : g € ) of the semigroup (¢ = Z¢ or of

the group G = 79 on X which leaves the measure i invariant (symbolically:
T = p). This means:
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22 Chapter 2 Some basic ergedic theory

1) 7% X — X is B-mecasurable and 9y = y forall g € G,
2) T = Idy and 799 = T9c T forallg, ¢’ € G.

2.1.2 Remarks
a) Observe that Ty = p implies

foTl9du = / f e, i particular || f o 79 = U flh
T~24 A

forall Ae B, felL,andged.

by If G = Z7 thenall 77 € T are invertible, because —g € G forall g € & and
TIoT9 =T%=Idy.

¢) Let eq,...,eq be the canonical basis for the lattice fo_ and consider g =
Zf=1 gie; € G Then T9 = (') o -+ o (1) where (T%) denotes the
g;-fold iterate of T%, Hence, if d = 1, then T? is the g-fold iterate of the map
T = T, In this case we also write (X, B, i, T instead of (X, B, 1, 7). If d > 1,
the transformations 7" do not necessarily commute.

;&* d) Recent contributions to the ergodic theory of Z%actions are collected in [48]
%‘é Actions of more general groups are studied in [42], [54]. <

2.1.3 Definition A measurable function f © X — R is T-invariant mod  if f o
T9 = f y-as. foreach g € G. Accordingly a set A € B is T-invariant mod 4 i
(T 9ANA)Y = 0 forallg € G. We write T,(T) 1= {A € B : ((T"9AAA)
0 Vg € G}. If T is generated by a single transformation T', we write also Z,(T’
instead of Z,,(T).

214 Remark Let Z(7) := {B € B: T798B = BVg € G}. Then Z(T) = L (T)
mod i, because for each B € Z,(T) the set B' := Uyeq Niee T B belongs
to Z(7) and p{ BAB") = 0. :

It is easy to show that Z(7") and Z,,(7) are o-algebras and that a B-measurable
function f is 7 -invariant {7 -invartant mod p) if and only if it is Z(7T)-measurable
(Z,.(T)-measurable). Q

Forn € Z, let

Ay = {gngieieG: gl <nVi=1,...,d} and Ay:

T

One of the corner-stones of ergodic theory is
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urable and T9p = p forallg € G,
790 TY forallg, g € G

5
/Afdp,’ in particuiar || f o T, = llfih

G.
I are invertible, because —g € G forall g € ( and

i

onical basis for the lattice Z% and consider g
(T o - o (T where (T%)% denotes the
if d = 1, then T9 is the g-fold iterate of the map
write (X, B, 1, T) instead of (X, B, w, T Xfd>1,
' necessarily commute,

¢ ergodic theory of Z.-actions are collected in (48]
ps are studied in 421, [54]. <

le function f : X — R is T-invariant mod p if f o
7. Accordingly aset A € B is T -invariant mod 1t 1

G. We write T,(T) = {A € B: wT9ALA) =
d by a single transformation T, we write also LT

(BeB: T B = BV¥ge G} Then I(T) = Z.(T)
= T,(7) the set B = Uges Npee: T+ B belong
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2.1.5 Theorem (Birkhoff’s ergodic theorem)
Let (X, B, 1, T) be amp.d.s. Foreach f € L}, the limit

- . 1
fla) = lim <= 3 7 f(T%) 1)

QEAH.

exists p-a.s. and jn L1, ion f i invari
ity L. The function f is T -invariant mod 1, and for each set
/f@xff@-
A A
2.1.6 Remarks

g {'Jlt‘helfxmit fis I#(T}Trpeasurable, and in view of identity {2.2) it is a version of
LS | Zu(TH, the conditional expectation of f under 1 given Z,{T), see A 4.32

(2.2)

by 1t suffices to prove the theorem for G
= 7%, becaus e 7d
reduced to G = Z4 in the following way: e the case (7 = Z% can be

!%ct—’]“ ; FTQ 19 € Zd)dbe a Z%-action. For each o € {-1,~1}¢ denote b
Tdy = ,( 79 € Z*). the Z7 -action T¢ :== 718149494} Since a measurable set i);
are—;:;:firilantl mod s if a.nd ‘only ‘if it is T¢-invariant mod ., the o-algebras 7, (Tl)
are 2 IT etr(l)t;cgilféltq co;nmcflwuh Z,(T). Now apply the ergodic theorem f':r tge
- ion f € L! and denote the resulting limitby § i
t ‘s ing limitby f,. By the prev
remark, all these f, are versions of the conditional expectation }E', f1z FT)}IOHS
1 © i

Denote now - '
oy fb)c/) /;:; tl: nzboxzm Zj ;rld%y AtI theione in Zi" It it.Wcre true
" s Rt al I?EA“ T, it would foillow immediately that
s = o Jo e #(.’T)} p#-as. However, i

ecomp'osxtlon of the summation over A, counts el-
ements ¢ with exactly one ¢; = 0 twice and, more gen-
erally, those with exactly & indices 7 for wh’ich gi =0
are counted 2* times, see Figure 2.1. Therefore th; s_um
220 2ogent [ o T must be modified by averages over
i;:i lcgi;selements g € At for which certain g; vanish.
orom £ ;n:ag:ﬂ that. these‘aver;agcs obey the ergodic the- 77
oS +-action withd < d. In ?articular, the Figure 2.1: The decom-
omespor g norming constants are 7% 50 that thege POsition of 4,
_ tons vanish asymptoticaily if they are normed by A~! = n=¢

¢) In -di i
A the one-dimensional case the ergodic theorem takes the form

n-1

- 1
fiz) = lim -—Zf(Tkn:) for p-a.e. x.
k=0
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24 Chapter 2 Some basic ergodic theory = 2.1 B;

By the previous remark one has for G = Z it follov

" . 1 n—1 . ) 1 n~—1 o
flz) = ‘}HTO\OEZJ'(T T) = 'E%E%f(fl‘ ) p-as.

k=0

forall g

Step 2
as. We

d) Ergodic averages along more general families of “parameter intervals” than Ap
estimate

are also of interest. Theorem 6.2.8 in [34] shows that these averages COnverge to

essentially the same f for a broad class of d-dimensional index sets.
&

Proof of the ergodic theorem: This proof comes in several steps. Some of them
are independent of the dimension, others are much simpler for d = 1 than for
d > 1. In order not to overload the proof with technicalities we therefore perform
some of the steps only for d == 1 first and provide the necessary modifications for
d > 1 later.

For d = 1 we are following closely the proof in [4, Theorem 2.2). Steps 1, 2,
and 4 of our exposition are written in such a way that we can refer to them later in
our proof for the case d > 1, which is close to the proof of [34, Theorem 6.2.8].
Also, for d > 1, we use the ergodic theorem for Z4-L.actions in Step 1. This
introduces some inductive structure to the proof.

We use the following notation: for measurable fi:X - Rlet

Suf = 3 foT?, Anf:,—;-}\»« Suf

g€An
A-f =liminfA,f, ATf:=limsupA.f.
n—+00 n—+00

where 1y
to dedué
J-2.5
The.
Ay {unif
subcube
Fort

Step 1: As f = ft— f~, it suffices to prove the theorem for 0 < f € L. Fo

i==1,...,d wehave
i 1 1
AnfoT% = Auf—— Y feTi+ ST foT?
genfhgl':O ,‘JE(AH+55)\Aﬂ
1 1
> Aaf ==\ 2o foT
QGAnygi:D

If d = 1 (and hence i = 1), the term in brackets is identicaily equal to f. If d >
we apply the ergodic theorem for Z4L-actions to this term and conclude tha
converges almost surely to some finite value. Therefore, in any case

At foT® = limsup Apf o T% 2 limsup Anf = A™f
n—rod n—300
pi-a.5. As at the same time S, f © Te < S, f and hence

n+1 1 o
ﬂ.d )\n+1s‘n+1f""A f

e

1
At foT® = limsup —S,f o T* < limsup
P00 )\ﬂ n-+oo
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s for G = 7 it follows that
n—1 A"I’f o :I-ug — A+f
. ; {-a.s.
 forallg € G. (2.3)

ok .1
f@tz)y = lim =Y fI*z) pas.
; n—r00 i s s ,
- Step 2: The idea of the proof is to sh i
»re general families of “parameter intervals” than A,  as. We will find, however, that such a n‘;\;;;a;he:ﬁ“;cgy that A_mf z A p
_ estimate. Instead we are going to prove that pproach does not yield a pathwise

6.2.8 in [34] shows that these averages converge o
fA+deS ’Yd/fd,u

oad class of d-dimensional index sets.
<
where 71 = L and 4y = 2% ford > 1. F
: . Forthe case d = litis th
to deduce from this in Step 3 + ~ is then an easy task
1-a.s. ep 3 that f A*fdp < [ A~ f du and hence A* f = A~ f
e e dea o dempe e e e o s v o
v 1Ze) mm §

ububes are nealy equal to A+f($).uc a way that the averages of f over these
_ which is close to the proof of [34, Theorem 6.2.8]. min?;‘;;mli:?l'value‘i functions g, h on X let gAh :== min{g, h} be the pointwise
. ergodic theorem for Z4 ' -actions in Step 1. This o'y r>1,0<e<1,anddefine H = H,,:= (A" f Ar)}1 — ¢). Th
ucture to the proof. o <r,and as (A*f) o T9 = A*f by (2.3, also H o T9 = H for all . . ((in

n order to perform the above mentioned decomposition let g& (.

ation: for measurable f : X — Rlet
S foTt, Auf :m“}i Suf » T:X =N zermin{n>1:S8,f@ 2\ H@)} .
geAn "

nf A, f, ATf:=limsupA.f.
x n-400

This proof comes in several steps. Some of them
1sion, others are much simpler for d = 1 than for
d the proof with technicalities we therefore perform:
- 1 first and provide the necessary modifications for

ng closely the proof in [4, Theorem 2.21. Steps 1, 2,
ritten in such a way that we can refer to them later in

Observe that 7(2) < oo forallz ¢ X

e oAt -
1?31 f(x+) =0, then 8y f(z) = f(z) > 0 = H(z) so that 7(z)} = 1,
ff A;( AT f(z) < 0o, then A™ f(z) > H(x) so that 7(z) < oo, and
i f(x) = oo, then A* f(z) > r(1 — &) = H(z) so that 7(z) < co.
The definition of 7 suggests that the subblocks of A, we are looking for are of

the fo ; i
acmanrmwfé,r(l:gw)_: g for suitable g € A,. If 7 is uniformly bounded we can
y with such blocks. Otherwise we replace f by a function f close

it suffices to prove the theorem for 0 < f e L. Fa

—;%& Z foT9+$ Z feoT?

QE(An"'ei)\An

g€An,gi=0
to fs : o s
1 “?1___1 Z jor?) . 7 :i ;ci t}i}a.t ihe asso:nzte_d F is bou'nded. More precisely, for M > 0 consider
AT gedngi=o ‘that {r>my and 7(z) := min{n > 1: S,f(z) > A, - H(z)}. Observe

ifr(z) > M, then Sy f(2) = f(z) > H(z), ie., Fz)=1< M, and

the term in brackets is identically equal to f-Hd>
if T{xy < 7
(@) < M, then Sy f(z) 2 Sy f(2) 2 MrH(z), Le., #z) < 7(z) < M.

em for Z4-actions to this term and conclude that

some finite value. Therefore, in any case _
Hence 7 <
< M. Suppose now that for each z € X there is some set A’ @< A
I = "

lim sup Ay, f o T% > limsup Anf = Atf i
e n—e0 - with the property that (4
i " "‘I" ! : - ! s i 3 M : L]
S, f o T% < Spy1f and hence cubgs contained in A, Si;q‘;;’x;hatg g € A, (x)) is a family of pairwise disjoint
(n+17% 1 :
Swaaf = A" > sl 2 17 m = M
Mgt [ s | 2 v . 24)

S, f o T% < limsup y
; n-t00 7
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26 Chapter 2 Some basic ergedic theory

This condition ensures that the union of these cubes covers approximately a frac-
tion ;- of Ay at Jeast, see Figure 2.2. For general 4 this family is provided by
Lemma 2.1.7 below; in the case d = 1 the set A! (z) is simply the set of all integers

7:(x) € Apps defined recursively by

=0 and Tk+1:Tk+%oTT"fork20.

In view of the definition of ¥ and the 7 -invariance of H we can estimate

Sf@ = S 3, (FeIh@= TN (FeTT)

REAL (L) GEA Lk th heAL () gEA phy

= T G2 Y Asgrhay - H(T"2)

ke Al (x) hEAL (T}
= Y el H@ 278 (- MY Hm)
he Al (x)

Hence, observing that H < 7,
(2.5

Snf = Sn()F_ H 1{T>M}) P ’Y&*l(n - M)d cH - ""Snl{‘r>M} :

e

e

Dividing this inequality by Ax and passing to the limit n — oo this yields at on
that A= f = 'y(IIH —~ 1A oMy & 'ygl(l — AT A
The hope is now that At rsmy 18
small because pu{r > M} is small if M is large enough.
But this term is of the same type as the term A* f that we
want to estimate. Furthermore, we have made no use of
the T-invariance of p so far, and it is exactly at this point
where we have to use it. Instead of estimating pathwise

averages Anl{r>ar(2), we integrate inequality (2.5yand _
observe that T = 12 Figure 2.2: An exam
K- for the cubes Aoz +

d
[fdu,:-ézfsﬂfdp?,fy;l i—%ﬂm{ fHdu—rMT)M}.

In the limit n — oo this yields

ffd,u%-?'u{'r>M}Zw;lff{dp.

= (1 — e)(A*f Ar), this yields

) — rAY ey

As limps 00 {7 > M} = O and as H

’Yd[fd,u?;(l-we)[(A*‘f/\r)dp_

=
' S

o
aggzé'?w’“\g%ﬂ -
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bes covers approximately a frac- ~ Passing with € — 0 and then with 7 -+ oo it follows that

s family is provided by
he set of all integers

e union of these cu
sigure 2.2. For general d thi
se d = 1 the set Aj(z}is simply t

ively by

/A*'f di < vy ffdu : (2.6)

(The Tast limit uses the monotone convergence theorem, see A 4,19 )

| el = _+1—‘01ka01‘.’(220- Step 3 (onl
d Tea = Tk tep 3 {only for d = 1); Here we deri T} crce 2
. e : tve the almost sure converg i
from estimate (2.6). Our first observation is that for bounded f{0< ; < 1;.4() V»}e)
=) =

- and the T -invariance of H we can estimate
have A7 f = —AT(—f) = M — AH(M — f)so that

S (FoTw= Yy, X (f o TXT"2)

(ThxyHL heAL @) 9645 rhay

ha:)f)(Thx) = Z )\—;-(Th 2 H(T“:c)
he Al {z)

o

A" fdy = M - fA*‘(M - fydu > M —~ /(M — e = / fdu

by (2.6) s v = 1. By a sim i
. ple truncation argument this inequali 3
ol H) 2 g - MY HE) unbounded f 2 0: Let M > 0. Then e

A"fduzfA“(fAM)duszAde /'fdu

T
asM— oo
by the monotone convergence theorem (see A.4.19), so that for any

23 measurable f=0

coa) = it MDY H 7 Sal iy
A and passing to the limit n —+ oo this yields at on

LM} = A (L~ AT A
ype i NOW that A" Lizsan 18
is small if M is large enough.
- type as the term AT f that we
nore, we have made no use of
r, and it is exactly at this point
(nstead of estimating pathwise
¢ integrate inequality (2.5) and Figure 221 An exam
for the cubes Argrox) +

[ A sz [ anz Jarsan. .7

As A" f < Atfitfollowsthat f = A f = AT f yeas

s . . .
0;32 4..f t WE: prove the remaining assertions of the theorem. For the L -convergence
o ,RAA ;)]j; .1; Sslfﬁ;es to show that the sequence (A4, ), is unifornfly integrable
we b . . nl =T = An(f - T) < An((.f - T}+) where A ((f - 7))y >
ave also (A, f — m’" < AL(f — ") so that ’ V=0

[ Anf =0t du < [ A =)D dp = [ (f —ydp,

and this tends to zero as r — 0o.

The T-invariance mod f
‘ pof f follows from (2.3 i3 a di
consequence of the 7-invariance of u: if A € l'”(g)") zh;?d (A2) 1 now a direct

— M\
fapz A | Hap—rplr > M}

jields

du+rg{fr>M}Z’Y§}[Hd“'

- L 1
‘/;fd,u._ Jim oo [ 8, fdp = lim -I-Z/

nJA n-400 A e
ngE/ln T=9 A

fngci,LL:/fd;L.
A

—Oandas H = (1 — AT AT, this yields

ffdu2(1»~6)[(x4+ff\f)du-

This fini
finishes the proof of the ergodic theorem for the case d = 1 Reviewing

the four steps
ps we see i ificati
ford s 1. that the following modifications and additions are necessary

e
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28 Chapter 2 Some basic ergoedic theory

I. a different choice of the cubes in inequality (2.4), and
2. anew proof of A*f = A~ [ uy-as. in Step 3.

We start with the first point, In the case d > 1, the cube A, can no longer be
paved without gaps using cubes A ¢y +h as in one dimension. Still the following
lemma provides a sufficient (though fragmentary) paving:

end w
previo
1. f:

Il

2.

2.1.7 Lemma Given positive integersn > M and amap £ = A, — {1,..., M},
there is a set A], C A, such that (Agg+g : g € A}) is a family of pairwise disjoint
“cubes” contained in A, and

N
> Augl 2 274 ~ M) @8) 5 5.
gE A, CX?

Proof:  Let Dy be a maximal collection of disjoint sets of the form Ay 4 ¢
with £g) = M and ¢ € A,.p. When Dy, ..., T have been constructed for
some 7 > 1, let T, be a maximal collection of sels of the form A;_; + g with
Eg)=1i—1and g € A,_ps, for which all sets in D, U ... LDy are disjoint. Let

A= {g€ Apps 1 Agp +9 €EDIUL UDN} . so that

Observe that the sets D, 1= Agg + g, 9 € A),, are pairwise disjoint subsets of A

Take any h € A,_j. By the maximality of Dgy, there exist some §7 > {(h)
and A; + g € D; with (Agg) + g) N (Aegy + 1) # @, Then £(g) == 7 > £(h) an
Ag(g) ) Agm). Hence h € ij = g”i‘/lg(g)““/lf(g), and therefore A,_»r C U!.'GA:. Jj
Now (2.8) follows from the inequality { D, < 2 |D,|.

It remains to replace Step 3 in the proof of the ergodic theorem by a more clal
orate argument. For the following lemma we need the concept of an ortho,
onal complement in the Hilbert space Li: For a linear subspace N of Lf; I
Nt :={heL::{f,h)y=0Vf e N}. Then N' is aclosed linear subspace an
clos(N) @ N+ = L2, '

218Lemma Let T = {TY:ge G}, F:={fec L foT = VT € T}an
N {h—hoT:he L T¢eT} Then F = N+

w
Progf: Toshow FC N+t letf e F,heL2andT €T Then

{(fh—hoT)=(fhY ~{(foT, heTy={(fh)— (fh} =0,

ie, fe NL
For the reverse inclusion let f € Nt Then {f, f ~ fo T} = O so that {/, f
{foT,f} Itfollows that

if=foTt = (f,f=foTy=(foT,f)+(foT,foT)=

=LA+ L1

-
S
.
o
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Chapter 2 _Some basic ergodic theory

1bes in inequality (2.4), and

“f peas. in Step 3.

nt. In the case d > 1, the cube A, can no longer be
es Apepng -+ asinone dimension. Stll the following
though fragmentary) paving:

 integers n > M and amap £ Ay = {1,..., M},
at (Aygy+9 g € Ay)isa family of pairwise disjoint

" Al 2 270 - MY (2.8)

Al
mal collection of disjoint sets of the form Ay + 9
onr. When Dy, .o ,D; have been constructed for
naximal collection of sets of the form Aiy + g with
for which all sets in Dy, U ..U D)y are disjoint. Le

Anent ! Ag(g) 4+ g€ DU U 1’)1\4} .

A + 9, 9 € Ay, are pairwise disjoint subsets of Ani
3y the maximality of Degy there exist some j = £(h)
o+ @) N (Aegny + 1) 4 (. Then £(g) = j = £(h) and .
;1= g Aggy— Agggy, 200d therefore Ayoar € Ugear Do

inequality |D,] < 24+ |Dl.

3 in the proof of the ergodic theorem by a more elaby
ollowing Jemma we need the concept of an orthog
lilbert space L%: For a lincar subspace N of L2 ]
0vf e N}. Then N is a closed linear subspace ajl

—

"9:gEG},F:ﬁ{fEL?L:fOT:fVTET}aJ
T T} Then F = N*.

et f e F,he L2 andT € T. Then

() = (foThoT) = (f,h) — (f,h) =0,
onlet f &€ N+ Then {f, [~ FoT) = 0sothat {f, )

0Ty~ (foT, fy+{foT, foT)= ~ A LA

D 3

2.1 Birkhoff’s ergodic theorem
29

ie, fer.
[

g‘” ‘jﬁ’ ”E‘“}if” of the proof of the ergodic theorem for d > 1:

or 1 et e AF - :

ond we de é‘ojﬁzii J‘;f :1 f-A ff - We must show that &f = 0 y-as. To this
) : mto a sum of functions from either th . —

previous lemma plus a small remainder term. Let ¢ > 0 © space Fror NV of the

1. f=wu;+rwhereu; € L2 and [ | is i i
e wand [[ro] dp < . This is possible because L2 is
2. uy = fitug+- b up--ry for som
: ek > 2where fy € I, u; = [ &
et > 1 Ly = Ry liyeT ¢
- f]f eG4 2,...,!;). and f|7‘1§d,u <Hrillz < ¢, see Lcmmaj2,1.83.
: cliar; {j ++ 13 where f; is bounded and [ |rildp < & (G = 2,...,k). Fo
e N . R ] . . ‘
" ple one can chkoose Jy = hy Liins1<ary for some sufficiently large M > 0.
Let R =1 41y - 370 o(r; —r; 0 T%), Then [ |R|djs < 3¢ and

x
f=ha) = fjoT+ R

=2
s0 that

.
Af S AR A — f;0T9%) + AR .

=2

N — AtTf L A =
owAfi=AYfi — A fi=fi - fi=0,and for j = 2,..., k we observe that

D JyoT

T
FEAn +g;

| f5 079

; 1
gAn(fj - -f.? ng))i = -.-)\_: Z fj VAR 5\}:‘

gEAL

1
< [—
<1y
GEAn A An+gy)
1
< g 2 gl T il
= 2007 gi] 1 filloo »

sothat A= (f; — f:0T9) = A*(f; ;
1t follows th;.t fi )= AT(f;— foT%) = 0 and hence A(f; — fioT9) = 0.

0<Af <AR= A*R—~ A"R < 24%|R].

In view of (2.6) this implies
Jasan<a [ atiran< 2, [ 1R 203

Ase > o
ne s U was arbitrary, we conclude that J Afdp = 0and hence Af = 0 p-as
0
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2.1.9 Remark The proof of the ergodic theorem given above goes back to articles |
by Kamae [30] and Katznelson and Weiss [32]. More traditional proofs, based
on a so called maximal ergodic theorem, can be found in many textbooks on er-
godic theory, in particular in Krengel’s book [34] devoted completely to ergodic
theorems.

2.1.10 Exercise Give a short proof of the L?-ergodic theorem due to von Neu-

tim 351 3 fore - | =0 vrell,

1300
€A,

where f is the orthogonal projection of f on the subspace I from Lemma 2.1.8

2.2 FErgodicity and mixing

The ergodic theorem is a rather general Law of Large Numbers for measure pre
serving dynamical systems, except that the limit f is not necessarily constant
Quite often, however, the limit turns out to be just u(f) (as in Example 1.4.5)
More generally, as f is a version of E,[f | Z,(T)], the o-algebra Z,,(7") must be
studied, and cases where it contains only null sets and sets of full measure are of
particular interest, because in such instances f is constant p-a.s.

2.2.1 Definition The m.p.d.s. (X, B, i, T) is ergodic if p(A) = 0 or y(A) = 1 fo
all A € T(T).

2.2.2 Lemma For a mp.ds. (X, B, u, T) the following statements are equiv
lent:

1L (X, B, 1, T) is ergodic.

2. Forall f € Lb (1 < p £ 00) we have: if fol' = f mody forallg € G, then
I = const mod p.

3. f = [ fdpmody for each measurable f : X — R with f* € L.

4, Forall A,B& B

im ST WTANB) = p(A)u(B).

A
*ogcAn

5. There is an M-stable family A € B generating B such that (2.9) holds fo
A B e A

6. If v is another T -invariant probability measure and if v < p, thenv = .
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