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Abstract

We present two classical theorems that give considerable geometric intuition into the notion of con-
vexity. The statement of the first theorem is roughly that disjoint convex sets can be separated by a
hyperplane, i.e. a level set of a linear functional. To accomplish this, we rely on the only general theorem
we have for guaranteeing that linear functionals exist, namely the Hahn-Banach theorem. The statement
of the second is essentially that a compact convex set can be recovered from its extreme points by taking
convex combinations. This result uses the hyperplane separation theorem in an essential way, in concert
with Zorn’s lemma.

1 Separating convex sets with hyperplanes

The proofs in this section are from [1].

Theorem 1.1 (Hahn-Banach, separation version). Let X be a real topological vector space. Let A and B be
disjoint convex sets in X with A open. Then there exist f € X* and o € R such that fla < a < f|5.

Proof. We are going to use the Hahn-Banach theorem, so we need a sublinear functional, which WLOG is
the Minkowski functional of some convex set containing 0. A natural choice is C' = A— B — (ag — bg) for some
(arbitrary) ag € A and by € B. Observe that A — ag is a neighbourhood of 0, so C' is, too, since 0 € B — by.

Let zo = —(ap — bp); with this notation, C' = A — B + zy. Observe that zo ¢ C, since 0 ¢ A — B; indeed,
if 0 € A— B, then AN B # 0, contradicting the disjointness assumption. Therefore pc(z9) > 1. We define a
linear functional fy: Rzg — R by fo(sz0) = s. For s > 0, we have

f(sz0) = sf(20) < spc(z0) = pc(szo) (1)

and for s < 0 we have f(szg) < 0 < pco(szp), so pc dominates fy on Rzg. Thus fy extends to a linear
functional f : X — R, which a priori might not be continuous, but is at least dominated by po. However, f
is indeed continuous, since for any € > 0, eC N (—eC) C f~((—¢,¢)).

We now need to find the claimed o € R such that the hyperplane {f = a} separates A and B. A
reasonable guess is o = sup f(A); we need to show that this choice of « has the required properties. First,
observe that if x is a limit point of A with f(z) = «, then in fact x € dA. To see this, note that in that case
f(x) € f(A) = f(A)N(f(A)), sox € AN Ac = dA. Therefore f|a < c.

Furthermore, the same argument shows that f|o < 1, since f|c < polc < 1 and C' is open. Thus, for
any a € A, b € B, we have f(a — b+ 29) < 1, which shows that f(a) < f(b) since f(20) = 1. By taking the
supremum over a € A, we see that f|p > «, concluding the proof. O

Different hypotheses yield an even stronger separation result, after a couple of lemmas:
Lemma 1.2. Let X be a real TVS. For f € X* and C C X open and convez, f(C) is an open interval.

Proof. Since C' is convex and f is linear, f(C) is a convex subset of R, thus an interval. If f(C) is the whole
real line, then it is certainly open, so we assume WLOG that 0 < sup f(C) < oco. Suppose that f(C) is closed
on the right, so that f(C) = (inf f(C),sup f(C)]. Then there exists + € C' C C with f(x) = sup f(C), and
for any r > 1, rsup f(C) = f(rz) € f(C)¢, so ra ¢ C. But then there exists a sequence (r,) with r, > 1
and 7, — 1, so r,x — x, meaning that x € C¢. Thus € C N C¢ = 9C. Since C is open, this contradicts
the assumption that z € C. O



Lemma 1.3. Let A and B be convex sets. Then A+ B is also convex.
Proof. Suppose that ai,as € A, by,bs € B, and ¢ € [0,1]. Then

t(ar +b1) + (1 —t)(az + be) = [tar + (1 — t)as] + [t + (L —t)be] € A+ B (2)
since each term is a convex combination of elements in a convex set. O

Your patience is now repaid:

Theorem 1.4. Let X be a locally convexr real TVS and A, B be disjoint closed conver sets in X with B
compact. Then there exist f € X*, a € R, and € > 0 such that fla <a<a+e< f|s.

Proof. Since B C A¢ and A€ is open, there exists a neighbourhod U of 0 with B4+ U C A°. Moreover, U
is WLOG convex (since X is locally convex), so B 4+ U is also convex, as well as open. Thus B+ U and A
are disjoint convex sets with B + U open, so there exist f € X* and o € R with f|4 < a < f|p+v. By the
earlier lemma, f(B + U) is an open interval, of which f(B) is a compact subinterval, so there exists e > 0
with inf f(B) >inf f(B4+U)+e=a+e¢. O

2 Recovering a set from its extreme points

The material in this section is from [2]. For this section, unless stated otherwise, let X be a real, Hausdorff,
locally convex topological vector space.

Definition 2.1. For any z,y € X, we write [z,y] = {tx + (1 —t)y : t € [0,1]} and (z,y) = {tz + (1 — t)y :
te(0,1)}.

Definition 2.2. Let A C X be any set, and let ) # F C A. We say that a closed set F' C A is a face of A if
[x,y] C F for any =,y € A with (z,y) N F # (.

Definition 2.3. An extreme point of a set A C X is a point x € A such that, if © € (y,2) C A, then
x =y = z: that is, a face consisting of a single point. We write €(A) for the set of extreme points of A.

Proposition 2.1. Let A be a set with a face F C A. Then a subset B C F' is a face of F if and only if it is
a face of A.

Proof. First suppose that B C F is a face of A, that [y,z] C F C A, and that z € BN (y,z). Since B is a
face of A, we have x € B. Thus B is a face of F.

Conversely, suppose that B C F'is a face of F, that [y, z] C A, and that x € BN (y,z). Sincex € BC F
and F is a face, we must have [y, z] C F. Since B is a face of F' and [y, 2] C F with BN (y, z) # 0, we must
have [y, z] C B. O

Corollary 2.1.1. Let A be a set with a face F C A. Then e(F) = FNe(A).

Proposition 2.2. Any compact conver subset of a locally convexr space has extreme points. That is, let X
be a locally convex space and let A C X be a compact convex set. Then e(A) # 0.

Proof. Consider the family F,,c; of faces of A, partially ordered by reverse inclusion. Let C = Fyoec be a
chain, and consider the intersection F' = NyeccF,. This is nonempty, by the intersection property for finite
sets, and is moreover a face of A: indeed, if [y,z] C A and = € F N (y, z), then for every a € C, we have
x € Fu N (y,2),s0 [y,z] C Fy. Thus [y, 2] C F.

Zorn’s lemma therefore yields that A has some minimal face F'. To see that F' consists of a single point,
we suppose that there exist z,y € F with « # y. Since X is locally convex and both {z} and {y} are closed
and compact, the Hahn-Banach separation theorem implies that there exists a continuous linear functional
¢ e X* with £(z) # £(y).

Let F = {z € F : {(z) = sup{(F)}; observe that since {(x) # {(y), we cannot have both z,y € F, so
F C F. Since F is compact (being a closed subset of the compact set A), Fis nonempty, and is clearly
a face of F. By the “face-inheritance” proposition, F is also a face of A, as well as a proper subset of F,
contradicting the minimality of F'. O



Definition 2.4. Let X be a vector space and let A C X be a set. The convezr hull of A, written ch(A4), is
the set of convex combinations of points in A. Symbolically, ch(A) = U, yealz,y].

Observe that every convex set at least contains the convex hull of its extreme points. Moreover, we have
the following rather satisfying result:

Theorem 2.3 (Krein-Milman). Let A be a compact convex subset of a locally convex vector space. Then A
is equal to the closure of the convex hull of its extreme points. That is, A = ch(e(A)).

Proof. By the above remark, we certainly have ch(g(A4)) C A; since A is compact, hence closed, we in fact
have ch(e(A)) € A. Our goal is equality, which we pursue by assuming that ch(e(A)) C A and seeking a
contradiction.

Let B = ch(e(A)) and suppose there exists some g € A\ B. By the Hahn-Banach theorem for compact
convex sets, applied to B and {x}, there exists £ € X* with £(xg) > supl(B). Let FF = {x € A: {(z) =
sup£(A)}, which is clearly a face of A. Moreover, for any x € F, we have {(x) > {(x¢) > sup{(B), so we
have FN B =.

Finally, since F' is compact and convex, F' has an extreme point gy, which is also an extreme point of A,
and thus contained in £(A) C B. This contradicts the disjointness of F' and B. Thus B = A, as claimed. O
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