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Abstract

We present two classical theorems that give considerable geometric intuition into the notion of con-
vexity. The statement of the first theorem is roughly that disjoint convex sets can be separated by a
hyperplane, i.e. a level set of a linear functional. To accomplish this, we rely on the only general theorem
we have for guaranteeing that linear functionals exist, namely the Hahn-Banach theorem. The statement
of the second is essentially that a compact convex set can be recovered from its extreme points by taking
convex combinations. This result uses the hyperplane separation theorem in an essential way, in concert
with Zorn’s lemma.

1 Separating convex sets with hyperplanes

The proofs in this section are from [1].

Theorem 1.1 (Hahn-Banach, separation version). Let X be a real topological vector space. Let A and B be
disjoint convex sets in X with A open. Then there exist f ∈ X∗ and α ∈ R such that f |A < α ≤ f |B.

Proof. We are going to use the Hahn-Banach theorem, so we need a sublinear functional, which WLOG is
the Minkowski functional of some convex set containing 0. A natural choice is C = A−B− (a0−b0) for some
(arbitrary) a0 ∈ A and b0 ∈ B. Observe that A− a0 is a neighbourhood of 0, so C is, too, since 0 ∈ B − b0.

Let z0 = −(a0 − b0); with this notation, C = A−B + z0. Observe that z0 /∈ C, since 0 /∈ A−B; indeed,
if 0 ∈ A−B, then A ∩B 6= ∅, contradicting the disjointness assumption. Therefore ρC(z0) ≥ 1. We define a
linear functional f0 : Rz0 → R by f0(sz0) = s. For s ≥ 0, we have

f(sz0) = sf(z0) ≤ sρC(z0) = ρC(sz0) (1)

and for s ≤ 0 we have f(sz0) ≤ 0 ≤ ρC(sz0), so ρC dominates f0 on Rz0. Thus f0 extends to a linear
functional f : X → R, which a priori might not be continuous, but is at least dominated by ρC . However, f
is indeed continuous, since for any ε > 0, εC ∩ (−εC) ⊂ f−1((−ε, ε)).

We now need to find the claimed α ∈ R such that the hyperplane {f = α} separates A and B. A
reasonable guess is α = sup f(A); we need to show that this choice of α has the required properties. First,
observe that if x is a limit point of A with f(x) = α, then in fact x ∈ ∂A. To see this, note that in that case
f(x) ∈ ∂f(A) = f(A) ∩ (f(A))c, so x ∈ A ∩Ac = ∂A. Therefore f |A < α.

Furthermore, the same argument shows that f |C < 1, since f |C ≤ ρC |C ≤ 1 and C is open. Thus, for
any a ∈ A, b ∈ B, we have f(a − b + z0) < 1, which shows that f(a) < f(b) since f(z0) = 1. By taking the
supremum over a ∈ A, we see that f |B ≥ α, concluding the proof.

Different hypotheses yield an even stronger separation result, after a couple of lemmas:

Lemma 1.2. Let X be a real TVS. For f ∈ X∗ and C ⊂ X open and convex, f(C) is an open interval.

Proof. Since C is convex and f is linear, f(C) is a convex subset of R, thus an interval. If f(C) is the whole
real line, then it is certainly open, so we assume WLOG that 0 < sup f(C) <∞. Suppose that f(C) is closed
on the right, so that f(C) = (inf f(C), sup f(C)]. Then there exists x ∈ C ⊂ C with f(x) = sup f(C), and
for any r > 1, r sup f(C) = f(rx) ∈ f(C)c, so rx /∈ C. But then there exists a sequence (rn) with rn > 1
and rn → 1, so rnx → x, meaning that x ∈ Cc. Thus x ∈ C ∩ Cc = ∂C. Since C is open, this contradicts
the assumption that x ∈ C.

1



Lemma 1.3. Let A and B be convex sets. Then A+B is also convex.

Proof. Suppose that a1, a2 ∈ A, b1, b2 ∈ B, and t ∈ [0, 1]. Then

t(a1 + b1) + (1− t)(a2 + b2) = [ta1 + (1− t)a2] + [tb1 + (1− t)b2] ∈ A+B (2)

since each term is a convex combination of elements in a convex set.

Your patience is now repaid:

Theorem 1.4. Let X be a locally convex real TVS and A,B be disjoint closed convex sets in X with B
compact. Then there exist f ∈ X∗, α ∈ R, and ε > 0 such that f |A < α < α+ ε ≤ f |B.

Proof. Since B ⊂ Ac and Ac is open, there exists a neighbourhod U of 0 with B + U ⊂ Ac. Moreover, U
is WLOG convex (since X is locally convex), so B + U is also convex, as well as open. Thus B + U and A
are disjoint convex sets with B + U open, so there exist f ∈ X∗ and α ∈ R with f |A ≤ α < f |B+U . By the
earlier lemma, f(B + U) is an open interval, of which f(B) is a compact subinterval, so there exists ε > 0
with inf f(B) ≥ inf f(B + U) + ε = α+ ε.

2 Recovering a set from its extreme points

The material in this section is from [2]. For this section, unless stated otherwise, let X be a real, Hausdorff,
locally convex topological vector space.

Definition 2.1. For any x, y ∈ X, we write [x, y] = {tx + (1 − t)y : t ∈ [0, 1]} and (x, y) = {tx + (1 − t)y :
t ∈ (0, 1)}.

Definition 2.2. Let A ⊂ X be any set, and let ∅ 6= F ⊂ A. We say that a closed set F ⊂ A is a face of A if
[x, y] ⊂ F for any x, y ∈ A with (x, y) ∩ F 6= ∅.

Definition 2.3. An extreme point of a set A ⊂ X is a point x ∈ A such that, if x ∈ (y, z) ⊂ A, then
x = y = z: that is, a face consisting of a single point. We write ε(A) for the set of extreme points of A.

Proposition 2.1. Let A be a set with a face F ⊂ A. Then a subset B ⊂ F is a face of F if and only if it is
a face of A.

Proof. First suppose that B ⊂ F is a face of A, that [y, z] ⊂ F ⊂ A, and that x ∈ B ∩ (y, z). Since B is a
face of A, we have x ∈ B. Thus B is a face of F .

Conversely, suppose that B ⊂ F is a face of F , that [y, z] ⊂ A, and that x ∈ B ∩ (y, z). Since x ∈ B ⊂ F
and F is a face, we must have [y, z] ⊂ F . Since B is a face of F and [y, z] ⊂ F with B ∩ (y, z) 6= ∅, we must
have [y, z] ⊂ B.

Corollary 2.1.1. Let A be a set with a face F ⊂ A. Then ε(F ) = F ∩ ε(A).

Proposition 2.2. Any compact convex subset of a locally convex space has extreme points. That is, let X
be a locally convex space and let A ⊂ X be a compact convex set. Then ε(A) 6= ∅.

Proof. Consider the family Fαα∈I of faces of A, partially ordered by reverse inclusion. Let C = Fαα∈C be a
chain, and consider the intersection F = ∩α∈CFα. This is nonempty, by the intersection property for finite
sets, and is moreover a face of A: indeed, if [y, z] ⊂ A and x ∈ F ∩ (y, z), then for every α ∈ C, we have
x ∈ Fα ∩ (y, z), so [y, z] ⊂ Fα. Thus [y, z] ⊂ F .

Zorn’s lemma therefore yields that A has some minimal face F . To see that F consists of a single point,
we suppose that there exist x, y ∈ F with x 6= y. Since X is locally convex and both {x} and {y} are closed
and compact, the Hahn-Banach separation theorem implies that there exists a continuous linear functional
` ∈ X∗ with `(x) 6= `(y).

Let F̃ = {z ∈ F : `(z) = sup `(F )}; observe that since `(x) 6= `(y), we cannot have both x, y ∈ F , so
F̃ ( F . Since F is compact (being a closed subset of the compact set A), F̃ is nonempty, and is clearly
a face of F . By the “face-inheritance” proposition, F̃ is also a face of A, as well as a proper subset of F ,
contradicting the minimality of F .
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Definition 2.4. Let X be a vector space and let A ⊂ X be a set. The convex hull of A, written ch(A), is
the set of convex combinations of points in A. Symbolically, ch(A) = ∪x,y∈A[x, y].

Observe that every convex set at least contains the convex hull of its extreme points. Moreover, we have
the following rather satisfying result:

Theorem 2.3 (Krein-Milman). Let A be a compact convex subset of a locally convex vector space. Then A
is equal to the closure of the convex hull of its extreme points. That is, A = ch(ε(A)).

Proof. By the above remark, we certainly have ch(ε(A)) ⊆ A; since A is compact, hence closed, we in fact
have ch(ε(A)) ⊆ A. Our goal is equality, which we pursue by assuming that ch(ε(A)) ( A and seeking a
contradiction.

Let B = ch(ε(A)) and suppose there exists some x0 ∈ A \B. By the Hahn-Banach theorem for compact
convex sets, applied to B and {x0}, there exists ` ∈ X∗ with `(x0) > sup `(B). Let F = {x ∈ A : `(x) =
sup `(A)}, which is clearly a face of A. Moreover, for any x ∈ F , we have `(x) ≥ `(x0) > sup `(B), so we
have F ∩B = ∅.

Finally, since F is compact and convex, F has an extreme point y0, which is also an extreme point of A,
and thus contained in ε(A) ⊂ B. This contradicts the disjointness of F and B. Thus B = A, as claimed.
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