
Math 421W2013T2 Solutions

2a.

d(x, y) =
∞∑
n=1

|xn − yn|
2n(max(|xn|, 1))(max(|yn|, 1))

b. A function in L2 but not in L3: f(x) = x−1/3

c. Done in class. Recall example of derivative map from C1(Ω), with sup
norm, to C(Ω), with sup norm. As shown in class this map is a closed, i.e.,
graph is closed, linear map that is not continuous (this does not contradict
closed graph theorem because C1 is not Banach). It is unbounded because
the ratio of sup of —derivarive— to sup of —original function— can be
unbounded – we also did this in class.

3. N/A

4a. State the result.

b. Show that I(f) is a positive linear functional. Apply Riesz.

5. Not responsible for nets. In case of sequences, just separate two distinct
alleged limit points by open sets.

6. True. fn
wk∗→ f means that for all x ∈ X, fn(x) → f(x). But then for

each x, {fn(x)}n is bounded in K and thus by UBP, {fn} is bounded in the
operator norm on X∗.

7. Spectral Theorem N/A

8. Application of Open Mapping Theorem done in class

9. The set c of all convergent sequences is a subspace of `∞.
For x ∈ c, let g(x) := limn g(xn). Clearly g is a linear functional on c.
We claim that p(x) := lim supxn is a sublinear fucntional on `∞.
For λ ≥ 0, clearly p(λx) := lim supλxn = λ lim supxn.
And

p(x+y) = lim supxn+yn = lim(sup(xn+yn)) ≤ lim supxn+lim sup yn = p(x)+p(y)

Since g ≤ p on c, g extends to all of `∞ s.t. g ≤ p.
So, for all x ∈ `∞, g(x) ≤ lim supxn.
And

−g(x) = g(−x) ≤ lim sup−xn = − lim inf xn
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So, g(x) ≥ lim inf xn.
Finally,

− sup |xn| = inf −|xn| ≤ inf xn ≤ lim inf xn ≤ g(x) ≤ lim supxn ≤ supxn ≤ sup |xn|

It follows that
|g(x)| ≤ sup |xn| = ||x||∞

So, ||g|| ≤ 1. But since g(1, 1, 1, . . .) = 1, we have ||g|| = 1.
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