Math 421W2013T2 Solutions
2 a .

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{\left|x_{n}-y_{n}\right|}{2^{n}\left(\max \left(\left|x_{n}\right|, 1\right)\right)\left(\max \left(\left|y_{n}\right|, 1\right)\right)}
$$

b. A function in L^{2} but not in $L^{3}: f(x)=x^{-1 / 3}$
c. Done in class. Recall example of derivative map from $C^{1}(\Omega)$, with sup norm, to $C(\Omega)$, with sup norm. As shown in class this map is a closed, i.e., graph is closed, linear map that is not continuous (this does not contradict closed graph theorem because C^{1} is not Banach). It is unbounded because the ratio of sup of - derivarive - to sup of -original function - can be unbounded - we also did this in class.
3. N/A

4a. State the result.
b. Show that $I(f)$ is a positive linear functional. Apply Riesz.
5. Not responsible for nets. In case of sequences, just separate two distinct alleged limit points by open sets.
6. True. $f_{n} \xrightarrow{\text { wk* }} f$ means that for all $x \in X, f_{n}(x) \rightarrow f(x)$. But then for each $x,\left\{f_{n}(x)\right\}_{n}$ is bounded in K and thus by UBP, $\left\{f_{n}\right\}$ is bounded in the operator norm on X^{*}.
7. Spectral Theorem N/A
8. Application of Open Mapping Theorem done in class
9. The set c of all convergent sequences is a subspace of ℓ^{∞}.

For $x \in c$, let $g(x):=\lim _{n} g\left(x_{n}\right)$. Clearly g is a linear functional on c.
We claim that $p(x):=\lim \sup x_{n}$ is a sublinear fucntional on ℓ^{∞}.
For $\lambda \geq 0$, clearly $p(\lambda x):=\lim \sup \lambda x_{n}=\lambda \limsup x_{n}$.
And
$p(x+y)=\lim \sup x_{n}+y_{n}=\lim \left(\sup \left(x_{n}+y_{n}\right)\right) \leq \lim \sup x_{n}+\lim \sup y_{n}=p(x)+p(y)$
Since $g \leq p$ on c, g extends to all of ℓ^{∞} s.t. $g \leq p$.
So, for all $x \in \ell^{\infty}, g(x) \leq \limsup x_{n}$.
And

$$
-g(x)=g(-x) \leq \limsup -x_{n}=-\lim \inf x_{n}
$$

So, $g(x) \geq \liminf x_{n}$.
Finally,
$-\sup \left|x_{n}\right|=\inf -\left|x_{n}\right| \leq \inf x_{n} \leq \lim \inf x_{n} \leq g(x) \leq \limsup x_{n} \leq \sup x_{n} \leq \sup \left|x_{n}\right|$
It follows that

$$
|g(x)| \leq \sup \left|x_{n}\right|=\|x\|_{\infty}
$$

So, $\|g\| \leq 1$. But since $g(1,1,1, \ldots)=1$, we have $\|g\|=1$.

