Math 421W2005T2 Solutions

1.b Nhhd base at f:
\[
\left\{ \cap_{i=1}^m p_{\alpha_i}^{-1}(U_{\alpha_i}) \right\}
\]
where each U_{α_i} is open in Y and contains $f(\alpha_i)$; here, the p_{α} are projection maps.

c. In fact, pointwise convergence is equivalent to convergence in the product topology. In particular, given pointwise convergence to f, for any U above in the nbhd base at f for suff. large N and all $n \geq N$, $f_n \in U$ because $f(\alpha_i) \in U_{\alpha_i}$ for $i = 1, \ldots, m$.

d. No. Cantor diagonalization argument gives counterexample.

Let f_n be sequence s.t. $f_n(x) = n$-th binary digit of x.

Then f_n has not convergent subsequence because a subsequence f_{n_k} is convergent iff for all x $f_{n_k}(x)$ is eventually constant (convergence in product space = pointwise or coordinate wise convergence) but for any subsequence n_k just choose an $x \in [0,1]$ s.t. $x_{n_k} = 1$ if k is odd and 0 if k is even.

This space is compact but not sequentially compact.

2. a, b, statements of results in the text.

c. done in class, Folland - Theorem 5.8b.

d. Choose f s.t. $||f|| = 1$ and $f(x) = ||x||$.

Since $x_n \overset{w}{\rightarrow} x$, $f(x_n) \rightarrow f(x) = ||x||$. Thus,
\[
||x|| = f(x) = |f(x)| = \lim_n |f(x_n)| \leq \liminf_n ||f|| ||x_n|| = \liminf_n ||x_n||
\]

e. $||x_n - x||^2 = ||x_n||^2 - 2\langle x_n, x \rangle \rightarrow 2||x||^2 - 2\langle x, x \rangle = 0$.

f. Yes. In ℓ^2, $e_n \overset{w}{\rightarrow} 0$ because for every $y \in \ell^2$, $\langle e_n, y \rangle \rightarrow 0$. Yet $||e_n|| = 1$ and $||0|| = 0$.

3a. No. If cts. functions were dense in L^∞ (with the sup norm then so would the polynomials with rational coefficients (by Stone-Weirstrass) and then L^∞ would be separable. But we proved in class that it is not separable.

b. State defn.

c. Since the inner product of H is a continuous function, if $f \perp D$ for a dense set D, then $f \perp H$. But then $\langle f, f \rangle = 0$.

1
d. To be a complete o.n. set means that the closed linear span of the set is the entire space. Since compactly supported (in $(0,1)$) cts. functions are dense it suffices to show that the closed linear span of the o.n. set contains \(C([a, b]) \) for all \(0 < a < b < 1 \). Apply Stone-Weirstrass. The set includes the constant functions and \(e_1 \) already separates points. So it is a complete o.n. set.

4. a. norm, strong and weak.
 b. Fix \(x \). For all \(f \in X^* \), \(\hat{T}_n x(f) = f(T_n x) \to f(T x) \). Thus, for fixed \(f \), \(\{||\hat{T}_n x(f)||\}_n \) is bounded. By Uniform Boundedness Principle, for fixed \(x \), \(\{||T_n x||\}_n \) is bounded.

 But since \(y \mapsto \hat{y} \) is an isometric isomorphism, \(||\hat{T}_n x|| = ||T_n x|| \). So, for fixed \(x \), \(\{||T_n x||\}_n \) is bounded. By Uniform Boundedness Principle, \(\{||T_n||\} \) is bounded by some \(M > 0 \).

 For given \(x \in X \), there exists \(f \in X^* \) s.t. \(||f|| = 1 \) and \(f(T x) = ||T x|| \).

 Thus,

 \[
 ||T x|| = |f(T x)| = \lim |f(T_n x)| \leq \sup_n ||f|| ||T_n x||
 \]
 \[
 = \sup_n ||T_n x|| \leq \sup_n ||T_n|| ||x|| \leq M ||x||
 \]

 So, \(T \) is a BLT.

5. N/A