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Lecture 9: Aa.~=o

Note: We proved that the unit ball is not compact in an infinite
dimensional NVS. It is an easy corollary that any ball is not compact,
essentially because the vector space operations, addition and scalar
multiplication, are continuous. e s

Theorem: Every non-zero vector space X has a Hamel basis. More
generally, if W is a subspace of X any Hamel basis for W can be ._/
extended to a Hamel basis for X. IO’Ox

Proof of Theorem: Let .S be the collection of linearly in@{endent
subsets of X that contain B, a basis of W, ordered by inclusion. Let
C' be a totally ordered subset of S, i.e., form of
C, one is a subset of the other. Note that any finite collection of

elements of C' can be ordered C; C Cy C ... € O} and in particular

Then U := Uecyc is an upper bound for C and indeed U is
linearly independent because any finite subset of U is contained in
the union of finitely many elements of C, C; ¢ Cy, C ... C Cy,
therefore in a single element C}.

Zorn gives us a maximal linearly independent subset M, i.e., if
M C T and T is linearly independent, then 7' = M.

We claim that M is also spanning. If not, then there is some
element € X that is not a linear combination of elements of M.
Then M U {z} is a linearly mdep%r}dent proper su_ger—set of M,
contradicting maximality of M. g g+ L2

And clearly M contains B. Thus, M’/i‘s a Hamel basis for X that
contains B.

To show that X does indeed have a basis, let B be any single
nonzero element z, which is clearly a basis for the subspace Kz, and
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apply the foregoing argument. []
Fact: Any two Hamel bases of a vector space X have the same

cardinality, and this common cardinality is called the dimension of -
X.

Later we will show that the dimension of any Banach space is either
finite or uncountable, equivalently cannot be countably infinite. This
1s a consequence of the Baire Category Theorem.

S0, Hamel bases are not so useful for Banach spaces. Later, we
will consider more useful bases, called Schauder bases, for Banach
spaces.

Hahn-Banach Theorem

E\*? Algebralc HB Theorem
W/ ]

Note: This is purely linear algebra (do not need a norm or metric
or even topology).

Proof: Extend a Hamel basis on W to a Hamel basis on X and
define F' to be 0 on the new basis elements (or anything else you
want). [

Note that this uses Zorn’s lemma because of proof of existence of
Hamel bases.

Dein: A sublinear functional p : X — R is a mapping which

satisfies p(z +y) < p(z) + p(y) and p(Az) = \p(z) for all z,y € X
=D

Example: Let p(z) := c||z|| where ¢ > 0 is constant. Observe
that p is a sublinear functional:

p(z +y) = cllz +yl| < ]|+ clyl| = p(z) + p(y)
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Real HB Theorem: L e of X, a real vector space.
Let f : W — R be gTinear functional. L4t p: X — R beasublinear
functional such that for all x , f(z) < p(z). Then f can be
extended to a linear functional F' on X st. F(z) < p(x) for all
z€ X and Fly = f.

Before we give the proof, we establish the most important appli-
cation.

Corollary: Let W be a subspace of X, a real NVS. Let W =R
be a BLF. Then f can be extended to a BLF F on X st. | F|| =
711

Proof: Apply real HB with p(z) = || ]| ||z

Since f is a BLF, for all w € W,

flw) < [f(w)| < [I£]] [|w]| = p(w)

/_—/
By real HB theorem\tlﬁe IS a linear extensmn F of fto X s.t. for
all z € X

F(z) <||f]] [=]]
We claim that in fact |
[F ()] < |If1] ]|
If F(z) > 0, already done.
If F'(z) <0, then by linearity of F,

|[F(2)] = =F(z) = F(==2) < ||fI| | - 2| = || ]| |||
So Fis a BLF on X s.t. [|F|| < ||£]].

But in fact || F'|| = || || since || f|] already equals sup, . w0 %
D ;
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Lecture 10:

Re-posted HW?2 on Tuesday; clarified defn. of Ky(£2) in problem
8.

Recall:

Real HB Theorem: Let W be a subspace of X, a real vector space.
Let f : W — R be a linear functional. Let p : X — R be a sublinear
functional such that for all x € W, f(z) < p(x). Then f can be
extended to a linear functional F on X st. F(z) < p(z) for all
CEGX&HdF.W:f.

Proof of real HB Theorem:

Step 1: One-dimensional extensions: Given a linear functional
f on a subspace W and sublinear functional p on X that satisfies
f(w) < plw) for allw € W, and y € X \ W, find a linear extension
F of f to U =W + Ry such that F(u) < p(u) for all u € U.

Since an extension F' is linear, it is completely determined by its
value on y. We will now derive necessary and sufficient conditions

on the value F(y) = « that will allow such an extension.
We need that for all real A

f(w) + A= F(w + Ay) < p(w + Ay) (2)
Of course, this automatically holds for A = 0.
For fixed A > 0, (2) is equivalent to:

a < (/N +Xxy) — f(w)) =plw/A+y) = flw/)

1

Since w/A € W iff w € W, this holds iff @ng‘:u:
o < inf p(w +y) — f(w) (3)
weW
For fixed A < 0, (2) is equivalent to:
a > (/N (plw+ Ay) — f(w)) = —p(=w/A —y) + f(—w/A) (4)
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Since —w/X € W iff w € W, this holds iff

a > sup —p(w —y) + f(w)
weW

Thus, a necessary and sufficient condition on o SIﬁl that the exten-
sion works is: Frase i

-

sup —p(w —y) + f(w) < a < inf plw+y) — flw)
weW wew

But the existence of such an « is just the condition that the LHS is
< than the RHS of the preceding line.

This is equiavlent to the condition that for all wy, wy € W,
—p(w1 —y) + f(w) < plws +y) — f(ws)
which is in turn equivalent to
flwi) + fws) < p(wa +y) + plwr — y)
But this is true since
flwr) + flwe) = flwr +w2) < plwr +wz) < p(ws +y) +plw; —y)

by subadditivity of p. [J
Step 2: Order the set & of pairs (W', f') of subspaces and linear
functionals f/ on W’ s.t.

WCW, flw="f f <pon W,
by inclusion:
(W/,f/) S (W//,f//> lf W/ C W//, f//‘W/ — f/.

Apply Zorn:
We Claim that every totally ordered subset C has an upper bound
(U, G).
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Let
U = U, 1) ccW'.

Let G : U — R be defined by G(u) = f'(u) for any (W, f') € C
st.ue W

Proof of Claim: we must verify:
1. (U,G)eS
(a) U is a subspace
(b) G is well-defined
(c) WCU
(d) Glw =
(e)
(U,G) is an upper bound of C: for all (W', f') € C,
(a) W' C
() GrW/ _
la: Ifz,y € Uanda,b € R, thenz € W',y € W and so because

of the total ordering, one of W', W" is contained in the other, say
W' c W" and so z,y belong to W” and so ax + by € W" C U.

1b: again because of the total ordering: if u € W/ NW”, then say
W' c W" and then f'(u) = f"(u).

lc: because for each (W', fy e C, W C W'

Id: Glw = fllw=f

le: since Glyr = [/ <p

2a,b: follow from defn. of (U, G)

G<p

2.
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By Zorn, there is a maximal element (M, F). If M = X, then let
y € X \ M and apply Step 1 to find a one-dimensional extension of
I, contrary to maximality of (M, F'). O

A semi-norm is a function z — ||z|| > 0 on a vector space that
satisfies

e Homogeneity e
e Subadditivity. s S~

Note that it follows from homogeneity that ||0]| = 0. However,
||z|| can be 0 without z = 0.

Note: Norm = Semi-norm = Sublinear functional.

So, the real HB Theorem applies to semi-norms as well as norms.
Some applications require sublinear functionals that are not semi-
norms.

Main example of semi-norm that is not a norm:

Let X be a vector space £ a linear functional, X — K. Then
||z|[ := [£(z)| is a semi-norm, and it is not a norm iff Ker(£) # {0}

(So, “most” linear fuctionals do not define norms).
Proof: Clearly, ||z|| > 0 and ||z|| = 0 iff z € Ker(¢).
By linearity, [x
| [Az]] = [£(0x)] = PR
By linearity
|z +yll = [z +y)| = [&(z) +£(y)| < [6(@)] + [£(y)] = []z]| + ]|yl

O
More specific example: on R?, ||(z,y)|| = |z|.
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Defn: Let X be a complex vector space. (.. #1/¢

Complex Hahn-Banach Theorem.
o 015_ +
A C-linear functionalis an ordinary linear functional A : X — C, - /
le.,
— h(z +y) = h(z) + h(y) and | -
— h(Az) = Ah(z) for all X € C. |

A R-linear functional is a linear mapping f : X — R that is
linear over R.

- flx+y) = f(z) + f(y) and
— flrz) =rf(z) for all r € R.
Example: X = C* and f(w, z) = Re(w), equivalently

1T -] —) ) '
e = K~/ a

flla+1ib,c+1id)) = a.
f is R-linear:
Clearly, f preserves addition. And

f(r((a+ib, c+id))) = f((ra+ird, ret+ird)) = ra = r f((a+ib, c+id))

f is not C-linear:

f(i(a+ib,c+id)) = —b.
if((a+ b, c+id)) = ia.

How are real and complex linear functionals related?
Prop 1: Let X be a complex vector space.
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a. Let f be a R-linear functional.

Then fo(x) = f(zx) — if(iz) is a C-linear functional, the com-
plexification of f. |

b. Let h be a C-linear functional and let f = RA.
Then f is a R-linear functional and h(z) = fo(x).

R C The ,.J,ov*

F=Rh o h=fo = UN§VD
- Proof: | %WM

a. Forr € R, |
(Jfelrz) = f(rz) —if(irz) = rf(z) - rif (iz) = rfc(z)

0, fc is R-linear.

@(w? fliz) —if(—z) = f(iz) +if(x) = i(f(z) — if(iz)) =
ch( )

Since fg is R-linear and “i-linear,” it is C-linear because

fe((a+bi)z) = felaz)+ fo(biz) = afe(z)+bife(z) = (a+bi) fo(z)
b. Write h(z) = f(z) +ig(z).
For all r € R,

flrz)+ig(ra) = h(rz) = rh(z) = r(f(z)+ig(z)) = rf(z)+rig(z)

and so comparing real parts, we see that f(rz) = r f(z) and so f is
R-linear. And

) f(ix) +ig(iz) = h(iz) = ih(z) = i(f(z) + ig(z)) = if (z) — g(x)

Comparing real parts, we see that
9(z) = — f(iz)
and so h(z) = f(z) — if(iz) = fe(z). O
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Defn of K-semi-norm: a function  — p(z) > 0 on a vector space
that satisfies

e K-Homogeneity: for all z € X and A € K, p(Azx) = |A| p(z)
e Subadditivity: for all z,y € X, p(z + y) < p(x) + p(y).

Prop 2: Let f be a R-linear functional.
a. Let p(x) be a C-seminorm on X . Then for all z € X, 1f(z)] <
p(x) iff forall z € X, |fe(z)| < p(x).

b. Let || - HbeanormonX TheancH—HfH

Proof:
a. If:

[f(z)| = |(Rfc)(@)] < |fe(z)| < plz)
Only If: Suppose that for all x € X, | f(z)| < p(x).

For x € X, for some 6, € Cs.t. |6, =1 and "\'
| fe(@)| = 6. fc(x)- vw;
Then L 5V

|[fe()] = Oz fc(z) = fe(boz) = éRf((:( Oz)
y 22| p(6oz) = [6alp(s) = p(z).

b AL el Ry 50
{

follows from:

el < 1Al
Let 0, be as in proof of part a, i.e. |9 ]— 1 and

| fe(@)] = bafe(z)
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Then as above

fe@)] =[r6.2) |
So

Ifell= " sw  |fc(@)l= sup [f6.z) < sup |f(y)
reX: ||z]l=1 TeX: ||z||=1 veX: |lyll=1
Note: in foregoing, we really needed p(z) to be a C-semi-norm
rather than a sublinear functional because we used p(8,z) = |6, ]p( )
for a complex 0,.
Complex Hahn-Banach Theorem: Let X be a complex vector
space and p(x) a C-semi-norm on X.

Let W be a complex subspace of X.

Let h be C-linear-functional on W s.t, for all w € W, |h(w)| <

p(w). | |
Then there is a C-linear-functional H on X s.t. H|y = h and for

allz € X, |H(z)| < p(z). .

Proof:
R
X F
/]\
W f=Rh +

Let f = Rh, and so by Prop 1b m

Then f is a R-linear functional on W s.t. for all w € W, flw) <
|[f(w)] < [A(z)] < p(w).

Since p is a C-semi-norm, it is a R-semi-norm and hence a semi-
linear functional.

By real HB, there is a R-linear functional F on X s.t. F lw =-f
and for all z € X, F(z) < p(z).
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