. Cbrollary' If Y is closed subset of a metrix space X and z €Y,
then d(z, Y) > 0. |

Proposition: Let X be a NVS and Y a proper closed subspace of
X. Let

= sup d(z,Y)

d’mam
| ‘ zeX: ||z||=1 &Z[X/ w = )
Then dyyee =1. n+ [)70/3
Proof: dpax < 1: ' | ,gCIY |
d(z,Y) < d(z,0) = ||z|| = 1. v

LetzEX\Yandd d(z,Y) > 0. Leta<1

Choose 99 € Y s.t.
d<|lz— yOH <d/a

and let z = lli oo Clearly Hx” — 1. For any y € Y,

Yo 1z =yo—yllz=ollll « ;)
lz—yl = [|——2 yH“‘ _Zd/(d/&)za
12 = wol lz=wll
since yo + y||z — yol| € V.
Thus, d(z,Y) > a. Thus, dgax > 1. 0

Proposition: Any finite dimensional subspace of an NVS is a closed
subspace. |

Proof: The subspace Y inherits the norm from the ambient space
X. Since Y is a finite dimensional NVS, its norm is equivalent to the
“euclidean norm and thus Y is complete. But any "complste subset of
an NV is closed (as proven in HW1, #1a; note that in that exercise
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you don’t need to assume that the ambient metric space is complete).

] | |
Theorem: The unit sphere iS; in any infinite-dimensional NVS X

(in particular, an infinite-dimensional Banach space) is not compact.

Proof: We will use the preceding prbpositioh but only that dpes >
1/2, i.e. for any closed proper subspace Y of X, there exists some
z €Sy st dlz,Y)>1/2

Inductlvely construct a sequence of n-dimensional subspaces Y. ?
“Start with a I-dimensional subspace Yj.

Inductlvely glven an n-dimensional subspace Y,, choose LUn € 51
st. d(zn, Yy) > 1/2. |

Set Yp41 = span(Yy, 2,), an (n+1)- dimensional subspace.
- Thisis possﬂale since X is infinite dimensional and so Y;, is alvva,ys
a proper closed subspace. |

N , , ,

Then for all p-dnd m>n, T, € Yy, and 50 ||z — 24| > 1/2. So,
Ty, I8 a sequence of points on unit sphere, with no Cauchy subsequencg
~and therefore no convergent subsequence. [l.

Note: we are not using completeness, only that convergent impli¢s
Cauchy. | .
Corollary: The closed unit ball By in any infinite-dimensional NVS-
- (in particular, an infinite-dimensional Banach space) is not, compact.

Proof: If unit ball were compact, then any closed subset of unit

ball would be compact. But unit sphere is closed and not compact.
] | i

e In particular, in an NVS a set can be closed and bounded but not;

%
compact. . : .

[a1rd



However, later we will find another meaningful topology in which
the unit ball in many Banach spaces is compact.

This is important for constructing certain probability measures
and invariant measures in ergodic theory:



'~ Continuous linear maps

For NVS X and Y, alinear transformation 7' : X — Y is béimded .
(BLT) if there exists C' > 0 s.t. forall z € X, ||Tz|| < C||z|.

i.e.,, T' expands distances from origin by at most some uniform

constant C.

| Theorem: Let T : X — Y be a linear transformation from one
vector space. X to another Y. The following are equivalent.

1. TisaBLT
2. T is uniformly continuous
3. T is.continuous‘
4. T is cor.ltinuvous:at 0

Proof
1 implies 2: Assume ||Tz|| < OHCEH for all z. Then for all € > 0,
if [jz — y|| < 0 = e/C’ then

1Tz — Tyl = ||T(z — 9)|| < Cllz — y|| < Ce/C =e.

- So, T' is uniformly continuous.
2 implies 3 implies 4 : obvious

4 fmplies 1: By definition of continuity at 0, with ¢ = 1, there
exists 0 > 0 s.t. if ||z|| < 0, then ||Tz|| < 1. Then for all = 7é 0, 1et

= 5II$H ‘Then,

| Wffmn (@)l = 7)) < 1
Thus, | |
@) < (1/8)] el
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This inequality also holdes for x = 0. Thus, lettmg C = 1 /9, we get
for all z £ 0,

7)) < Cfo]
Thus, T is a BLT.. (O ‘

| 23 4
Conditions 472 and 87are, of course, continuity conditions.
- Conditions 4 Is a boundedness condition. |

 Note that BLT does not mean that 7' is bounded in the usual
sense that the i image of 1" i 18 bounded. In fact, the only linear trans-
formatlon bounded in that sense is the 0 transforma,tlon

The BLT condition is equivalent to ||7'(z) — T'(y)|| < C||z — y|]
for-all x,9. This is otherwise known as the Lipschitz continuity,
which means that there is an upper bound to the factor by which T
can expand distances. This is a strong form of continuity. So, you
- should t&nk of the BLT condition as a stronger form of continuity.

If [[PH"< 1, then a Lipschitz continuous mappmg would be called
a contraction mapping. -

Exercise: In finite dimensions, any linear transforma,tion is con- s/
tinuous, equivalently, a BLT. This is not true in infinite dimensions.

>(\—-7/\—Y

For non-linear tra,risforma,tions, bounded,‘in Banach norm sense,
and continuity have little to do with one another. It is the linearity
that brings boundedness and continuity together here, | '
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eV Bl & C

| NIxV 5, (-2
- Lecture 7: i7" 479 3?71 e / =
Recall:

For NVS X and Y, alinear transformation 7' : X — Y is bounded
(BLT) if there exists C' > 0 s.t. for all z € X, ||T'z|| < C||z]|.

Defn: The (operator) norm of a BLT is defined

| T
i = sup
- zeXxA£0 HIH
Sometimes we write ||| := ||T|o.
Proposition: N
IT||= sup ||T%]|=inf{C >0 HTxH < Cllal| v € X)
zeX:||z||=1

| Proof: The first equality follows from hneanty of T" and homogeneity

Cof ||+ ||: write
ITal|

=1
| =] |||
For the second equality, let Ciye be the RHS
For all z £ 0 and all C > 0 “as above” 22l < & and o

RIEZD
|| Tz|] :
H5U|| S Oll’lf' SO;

= 1T(—

1T = sup
T€X:x#0 H$|l

By definition of | T}, for all z, ||Tz|| < ||T| |=]|. Thus IITH is
one of the C' > 0 “as above” and so

Cing < ||T].0

Examples of BLT:
1Tl =l
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T(ml, T, ...,) = (aiT1, 092, ... ,)
s linear. Then, T is a BLT iff ay is bdd. And ||T]| = sup|ax.
" Proof: If a, is bdd., then for all z, -

| Tx|| = sup |anzs| < (sup an|)(sup [zn]) = (sup [an|)]|z]]
and so ||T'|| < sup |an|. | 4 ‘ ‘

Let e, = (0,...,0,1,0,...) where the 1 is in the n-th coordinate.
Then | |
| | | Tenl| = [an| |
and since [|en|| = 1, ||T|| > sup, ||Te,|| = sup |an.

So, |17 = sup [a.
If a,, is unbdd., then | | |
: :t‘. — - JQ J )
7112 s |[Tenl] = supaa] = 0. So, | 272

ne

L] 4 .
In particular, T'(x) = (21, 2x9, 323, ...) is linear but not bounded.

Can you see directly why T is not continuous?
2. Exercise (modiﬁcation‘of Example 1): For g € L, define
T:L*® — L®by T(f) = fg. Then T is a BLT and ||T|| = ||9]|co-
~ bomdd
Defn: ABLT T : X — K iscalled a %z’neaﬂ" functional (BLF)

3. Define T": (C([0, 1}, [| - [|sup) — R by
Tf=f(0).

.Th_en, |
1T f[| = 1£0)] < sup|f]=|Ifll

T oy o




So, [T <1.

But for any constant function f(x) = ¢, then

ITFIl = lel = sup | £ = |I/]]

“and so ||T|| > 1. |
4. Deine T": (C([0, 1], |[ - |[sup) — R by

Tf:/3Mu

where p is Lebesgue measure. Then,

IITfH—I/ fdu|</ fldu < sl = 171
So, || < 1

‘But for any constant function f(z) = ‘then.

1Tl = le| = sup|f| = ||£]]
and so ||T|| > 1.

Examples 3 and 4 are special cases of the following: Let 1 be a
finite signed Borel measure on [0, 1]. Define

sz/ﬂwu

~ Then T is a BLT with ||T]] = |, the total variation of Iz
- Example 3: p = g

Example 4: 1 = Lebesgue measure |
It turns out that any BLT T : (C([0,1],]] - ||sup) — R is of this

form, i.e.,
T(ﬁ /fn’//



for some finite signed measure L. ThlS is the Riesz Representation
" Theorem 7.17 in Folland.

Write LP((X, );R) or LP((X, 1); C) according to whether you

are thinking of L as consisting of real or complex valued functions:
In the next example we write LP = LP((X, u); R).

5. Let 1 < p < o0, g sa,tlsfymg +o L = 1. Here, q is called the
dual exponent of p and satisfies

¢—1l=-qg=——=1<g<c0
p p—1
For g € L9, define T : LP — R by

~ [ rodp

171 = 1lgllg-

We will show that

~ By Holder,

17 =171 =1 [ Fodul < [ 1foldss < 151l Vgl
Thus, [|7] < [|gll¢- (in particular, fg is integrable.
Let f = lglq/psgn(g). We Claim f € LP and

7(f) = 1111l llall,
2050 |17 = fgl.

e =




Lecture &:

Review:
Let p be countaing measure on N.
>
b= L*(N, ),

the set of bounded sequences (1, Z3, . . .).

@j’): LP<N> M):

the set of squences (x1, Zg, .. .) s.t.

co |
Z |zn|? < 00
n=1

Recall: we wanted to show that for T': LF — R, g € L4, T(f) ==

[ fgdu, then
T
Recall that we already showed ||T|| < ||gllq. o | v
Let f = |g|#/Psgn(g). We Claim f € L? and

)

T(f) = 11£1l» ll9llq
and so [T = [|glly- |
Proof of Claim: | .
(15 gtlsenla)l? = (ol
W |

Since g € L4,

1= ([ 177 = ([ ol = gl
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and in particular f € LP. Also, since ¢ — 1 = p,

‘Q/P+1 #ﬁ)

/fgdu /lglqdu— gl

= lgllq (Nalle)*™ = Tlally (lgllg )Q/p"‘ [lgllg 1711y,
the latter equality by (1). O

L(X,Y): |
Defn: For NVS XY, L(X Y') denotes the set of all BLT from X
to Y.

Propoxsition: L(X, Y) is an NVS with the operator norm || - o

Proof: oo
a. L(X,Y) is a vector space: if T',S € L(X Y) and a,b € K,
then aT" + bS is linear and for all z € X,

|(aT +bS)(@)|| = [laT'(z) + bS(2)[| < lal | T(2)[| + 6] [[S(2)]]

< (lal [IT[] + 161 [ISIDI]] |
Thus, T+ bS is a BLT with norm ||aT +bS|| < |a] ||T||+]?] HSH

>
]:// 91Pg sgn(g) = |g

and so

b. The operator norm is a norm:

i. Positivity: By definition, clearly || - || ‘2 0 and ||0]] = 0. If
|T||| = 0, then for all z, Tz = 0 and so T" = 0.

ii. Homogeneity:

|ATz]| Tz]|
|AT|| = sup = |A| sup = |\l 7]
r€X :x#0 H%H zeX:x#£0 HCE l

iii. Triangle inequality: already proven above with a = b= 1. [J
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Convergence in the operator norm on L(X,Y)., T, — T:
means that ||T, — T|| = 0. This is equivalent to supj; -1 ||Tn(z) —
T(z)|| — 0, which means uniform convergence of 75, to 1" just over
the unit sphere, equivalently the closed unit ball.

Theorem: If Y is a Banach space, so is L(X,Y).

So, this gives more examples of Banach spaces. Most important
example is: L(X, K) is a Banach space.

Proof of Theorem: Very similar to prdof that B(Q) or L® is a
Banach space. |

Let T, € L(X,Y) be Cauchy. For z € X,
1Tn(2) = Ton(@)]| < || Tn — Tl [ ||

and so {T,(z)} € Y is Cauchy and so converges to some point.

- DefineT: X =Y by T(x) = lim, T),(z).

It suffices to prove the |
Claim: a. T' € L(X,Y) and b. T;, = T in L(X,Y).

Deja vu?
~ a. First observe that T is linear:
T(az + d'z’) = lim T, (az + o'z’) = lim aT},(2) + o' Tp,(5")
= alim Tp,(z) + ' lim Ty, (z') = aT(z) + a'T'(2)
n : mn ‘

Next, since 15, is Cauchy, ||T,|| converges (recall that this holds
in any NVS). Since || - || is continuous, for all z € X,

IT@)| = ||t To(a)] = lim | Ta(@)] < (im 1Tl Dl
Thus, T is bounded with ||T|| < lim, ||T,||. So T € L(X,Y).
(In fact, one can show that ||7'|| = limy, ||7%]]).
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b. For all z € Sy, since || - || is continuous,

[Tn(z) = T(2)|| = [|Tn(z) — lim T (z)]]
= lim ||Tn(z) — Ti(x)|| < limsup ||T5, — Th|
m—r0o0

m—0o0

S0,
| T, — T)| < limsup ||T, — Thl|

m—o0

Thus, since T;, is Cauchy,
hm T, —T|| < lim limsup |1, — Ti|| =0 O

n—=x0 m—oo

"Hamel Bases

Defn: A Hamel basis for a vector space X is a subset B such
that every € X can be expressed umquely as a (finite) linear
combination of elements of B.

This is equivalent to saying that B is i) spanning (i.c., every el-
ement of X can be expressed as a (finite) linear combination of X)
and ii) linearly independent (i.e., no non-trivial linear combination
of elements of B can equal 0).

So, a Hamel basis is the same as an ordinary basis as typicaﬂy

defined in linear algebra classes. But a Hamel basis can be infinite
or even uncountable.

Theorem: Every vector space X has a Hamel basis. More gener-
ally, if Y is a subspace of X any Hamel basis for Y can be extended
to a Hamel basis for X.

The proof depends on Zorn’s Lemma: If S is a partially ordered
set and every totally ordered subset of S has an upper bound in S,
then .S must have a maximal element.

Terminology of orderings < on a set .S
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partial ordering: 1) If s <tand ¢t <r,thens <r;ii)if s <t
and ¢ < s, then s =, and iii) s < s.

— total ordering: partial ordering + every pair of elements is
comparable, i.e., given s and ¢, either s <t ort < s,

— s < tmeans s < tand s #t.

——— Note that any finite totally ordered set of n distinct elements
must satisfy s1 < 59 < ... < sy,

— upper bound for a totally ordered subset C' C S is an element
 ueSst.e<uforallueC

’ § \  — mazimal element m € S means: if m < s, then m = s.

Zorn’s lemma is equivalent to the axiom of choice and thus is
“independent of the Z-F axioms of set theory.

! The typical application of Zorn’s lemma is to a collection of subsets

', of another set ordered by inclusion A C B. ) » fwﬂf% _@f/ﬁﬂ{ god \
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