Lecture 33:

Riesz Representation Theorm for C'(£2): Let 2 be a compact met-
ric space. Then N (€) is the space of all finite signed Borel measures
on 2. Then, C(Q)*, with the operator norm, is isometrically isomor-
phic to N(£2), with the total variation norm, is

The isometric isomorphism is given by N(Q2) — C(2)*, u — P,
where

(1) = [ fdn

and p is a finite signed Borel measure.

Approximation Lemma: Let B be a Borel subset of a metric space
(2 and p a finite positive measure on ). Given € > 0, there exists

feC(Q)st. 0< f<land [|f—1pldu<e.

Proof:
Since a positive Borel measure measure is regular, there is a com-
pact set C, open set U s.t. C C B C U and pu(U \ C) < e.

Define
0 U
f=feulz)= { d(2,U°) ki }

d(z,U¢)+d(z,C) rel
Then f is continuous, 0 < f <1, f|lc = 1, flye = 0. Then

/If —1pldp < U\ C) < .0

Outline of Proof of Riesz Representation Theorem:
Step 1: Show that ®,(f) := [ fdu is a BLF
Clearly @, is linear. And

000 =1 [ st = [ g < [ 171+ [ 171
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< S sup (" (X) + 17 (X)) = |1fsupl 2]
So, @, is a BLF with ||, || < ||u]].

Step 2: Show that ||®,|| = ||ul].

Let P and N be the pos. and neg. sets of the Hahn decomposition
of p.

By approximation lemma, find continuous 0 < f, g < 1 where s.t.

/ 1p — fldiul < e, / Ly — gldlu| < e
Then

B,(f — )] = | / (F = 1p)dp — / (g — 1n)dp + / (1p — 1x)dy]

> —/!f—lp\d!u!—/\g—lw\d\uH\/(lp—lw)du\ > —2e+ ||
Thus, ¢, is a BLF with ||®,|| = ||g||. O
Step 3: Show that the map p + @, is linear.

Vol ) = [ falapstn) =a [ fdprd [ giv = ot (£)100,(5)

Step 4: Show that the map p > @, is injective.
Follows from Steps 2 and 3.

Alternatively, if ®, = ®,, then for all continuous f, [ fdu =
[ fdv; apply approximation lemma to show that for all Borel sets
B, u(B) = v(B).

Step 5: Show that the map p > @, is surjective.

Defn: A BLF ® on C'(X) is positive if for all f € C'(X) whenever
f=0,0(f) = 0.



Step ba. Given a BLEF ® show that you can find positive BLF's
P* st. ® = dT — . This is a kind of Jordan decomposition.

Step 5b (the hard part). Show that given a positive BLF @, there
exists a positive finite measure p s.t. for all f € C(X), (f) =
[ fdu. Apply this to T, D~

Step dbi:

Defn: For f € C(X) and U open, write f < U if 0 < f <1 and
{z: f(z)#0} CU.

Let @ be a positive element of C'(X)*. For an open U define

p(U) = sup{®(f) : f € C(X), f < U}

Step 5bii: For F C X, define
' (U) =inf{u(U):U 2 E,U open }

Show that p* is an outer measure.

Step bbiii: Show that every open set U is p*-measurable and
p(U) = p(U).
Step Hbiv: Define 1 to be the measure on Caratheodory measur-

able sets.

Step 5bv: Show that indeed, for all f € C'(X),

v(s) = [ sn



Lecture 34:

Recall:

Riesz Representation Theorem:

(): a compact metric space.

N(£2): the space of all finite signed Borel measures on €2, with the
total variation norm.

C'(Q2)*, with the operator norm.

Then, C(2)* is isometrically isomorphic to N(£2).

Approximation Lemma: Let F' be a Borel subset of a metric space
(2 and p a finite positive measure on ). Given € > 0, there exists
feC)st. 0< f<Tland [|f—1pldu<e

Defn: Let M (€2) denote the set of all (positive) Borel probability
measures on 2.

For p € M(Q), ||u]| = 1 and so M(2) C B*, the unit ball in
C(Q)*.
Theorem: M (€2) is a weak™-compact convex subset of B*.

Proof: Convexity is obvious.

By Banach-Alaoglu, B* is weak*-compact. So, it is enough to
show that M (€2) is weak™ closed.

————wkx
Let p € M(©2) . We want to show that € M(Q), i.e., u(S2) =
1 and p is a positive measure.

Suppose that p is not a positive measure and so it has a Hahn
decomposition s.t. p(N) > 0. Let 0 < f < 1 be as in the
approximation lemma s.t. [ |f — 1y|d|p| < €, and so

[ s [ =1 [ = 1
< / |f — 1n|d|u| <€
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and so
/fd,u < —u (N)+e
The set

U:Uf’u,GZ{VEC(Q)*Z‘/de—/fd,LL‘ < €}

is a weak™ neighbourhood of p. So there exists some v € Uy, N
Since [ fdv > 0, we have

—u (N)+e> /fd,u> fdv —e > —¢
Thus,
—u (N) > —2¢
a contradiction, for sufficiently small e.
S0, 1 is a positive measure.

Also, since Uy ¢ is a weak™ nbhd of pu, there exists v € Uy N
M (). Thus,

1= 0] = () = )] = [ 1~ [ 1] < ¢

Thus, u(X) = 1 and so p is a probabilty measure and so M(£2) is
weak™ closed. [

Theorem: Let €2 be compact metric. Then M () is weak™ metriz-
able with an explicit metric: Let fi, fo, ... be a countable dense set

in C(£2).

& [ fudp— [ fadv|
d(p,v) -—; 2ol



Rough idea of proof: Weak™ topology is smallest topology s.t. for
each f € C(Q), u — [ fdu is continuous. So, a nbhd base for
weak™ topology at p is the collection of all N*,Uy. , .. where

U=Uy je; = {V S M(Q) : ’/fidV — /fz’d,U’ < 62’}

For v to be in U for m large means that the m-th partial sum of
d(p,v) is “small” and the tail of the series is automatically “small;”
o d(p,v) is “small.”

Conversely for d(u,v) to be “small” means that v belongs to U
for large m.

More details on the proof in Lecture 37.

Corollary: M (€2) is weak™ sequentially compact, i.e. every se-
quence in M (£2) has a weak™ limit point in M (€2).

Defn: A measure-preserving transformation (MPT) on a prob-
ability space (W, A, u) is map T : W — W which is measur-
able and measure-preserving, i.c., for A € A, T 1(A) € A and
p(TH(A)) = p(A).

Ergodic theory is the study of iterations of MPT's.

Example 1: Doubling map (w.r.t. normalized Lebesgue measure
on the unit interval)

W =10,1), A = Borel o-algebra, u = Lebesgue measure
T(x)=2x mod 1
Draw graph, which has two pieces of slope 2:

The map is MPT because inverse image of an interval [ is the
union of two intervals each with length (1/2)¢(1).

Chaotic map; sensitive to initial conditions.
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Can also be viewed as a continuous map, an expansion, from circle
to itself (z — 2?).

Example 2: Rotation:
M : [0, 27) with normalized Lebesgue measure

To(0) =0+« mod 21, o € M.
Graph has slope 1.

The map is MPT because Lebesgue measure is translation invari-
ant.

Can also be viewed as a continuous map, a rotation, from circle
to itself (z — €"*2)

Not chaotic because it is a rigid motion.

If a/m € Q, then T is periodic; each orbit is a finite set of points.
If a/m ¢ Q, then each orbit is dense.



