Lecture 30:

Recall:

Lemma: Let W be a (norm-) closed subspace of an NVS X. Let
y € X \ W. Then thereisan f € X*st. f(y) > 0and fly = 0.

Theorem; A subspace of an NVS is weakly closed iff it is norm-
closed.

Proof: Every weakly closed set is norm closed.

For the converse, let W be a norm-closed subsapce of X. We must
show that " = W. The weak closure can only be larger than the
norm closure.

Suppose y € W \ W. By the Lemma, there exists f € X* s.t.

fy) >0, flw=0.
Then {x € X : f(x) # 0} is a weakly open set which contains y

but is disjoint from W. Thus by Prop 2, y & ka, a contradiction.
[]

Theorem above can be generalized from subspaces to convex sets,
using separation theorems which are consequences of HB Theorem.

Weak convergence:

Recall that z, — x in a given topology (X, 7 ), means that for all
U € T, there exists N s.t. foralln > N z,, € U.

Prop: For a NVS, z,, — z in the weak topology, written z,, — .,
iff for all f € X* f(x,) — f(x).

Proof:

“only if:” Suppose that x,, — x in the weak topology.

Let f € X*. Then for all ¢ > 0, there exists N s.t. for all
nz>N,z, €U =Us;.= {y € X : ‘f(y> —f(:C)‘ < 6}' Thus,



“if:” Suffices to show that for all U in a nbhd. base at x, there
exists NV s.t. foralln > N z, € U.

So, suffices to show that fi,..., fn, € X*ande >0,...,¢, >0,
there exists N s.t. for allm > N, x,, € N2 Uy, 4,

But this is true: by assumption, given ¢; > 0,..., ¢, > 0, choose
N; st. for all n > N;, each |fi(x,) — fi(z)| < € and so for n >
max(Ny, ..., Ny), 2, € LUy (.. O

. n
Norm convergence, written x,, — x, means ||z, — z|| — 0.

Note: 7" is stronger than 7%°*  So, norm convergence is
stronger than weak convergence.

Sanity check: if 2, = x in the norm topology and f € X*, then

[f(zn) = fl)| < |[fI] len — ]| = 0.

Example: a weakly convergent sequence that is not norm conver-
gent.

Recall (£2)* = (% for v € (?,x* € ({*)*
v(x) = (x,27) = ) wia]
i=1

Let e,, be the standard basis in sequence spaces.
ep = (1,0,0,...,),eo=1(0,1,0,...,)
For each o* € (£?)*,
z*(e,) =x, — 0
So, e, — 0.

But for n # m, ||e, — em|]2 = v/2 and so e,, does not converge in
the norm topology.



Theorem: For an NVS X, (X, 7%} is a locally convex (i.e., has
a base of convex sets), Haudorff TVS.

Proof:

1. TVS: Continuity of addition: if z,, — x and vy, — vy, then for
all f e X*,

f@n+yn) = f(xn) + flyn) = flz)+ fly) = [z +y)

and s0 T, + Y, — T + .

Continuity of scalar multiplication: if x, — x and A, — A, then
then for all f € X*

FOnn) = A f(n) = Af(z) = f(Az)

and s0 \, 2z, — \&.

WARNING: We have only proven sequential continuity of vector
addition and scalar multiplication. Since the weak topology need not
be metric, this may not suffice. Can give a legitimate proof of conti-

nuity of addition and scalar multiplication, using Nets (Section 4.3).
A net x;,7 € I is a “generalized sequence” where I is a generalized
index set, called a directed set. More on this next time.

2. Hausdorff: By Hahn-Banach given any x # y, thereisa f € X*

st. fle—y) # 0. Thenw € Uprpo)s—y)ls Y € Usy0/2)IfG-y)l:
and U .1/ N Ury 0217 = 0

3. Locally convex: We first claim that each Uy, is convex:
suppose ,y € Uy, Let t € [0,1]. Then,

|f(tz + (1 =)y — xo)| = |(tf(x — 20) + (1 — 1) f(y — 20)]|
<t f(x—z0)|+ (1 =) fly —xo)| < te+ (1 —t)e=c¢;
so, tx + (1 — t)y € Usaye and so Uy, ¢ Is convex.
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Since intersections of convex sets are convex and sets of the form
M Uy, 2., form a base, we have a base of convex sets. [

Theorem: For an NVS X (X, 7""™) is a locally convex, Haudorff
TVS.

Proof: we already proved TVS. Hausdorf follows from fact that
norm topology is metric. Locally convex proven similarly to locally
convex for weak topology using norm instead of linear functionals.



Lecture 31:

Recall:
Bi0)= (] Ae:lfl@)l<1}
{feXx*||fll=1}
This implies

Bu(0)= [ {z:|f(@) < M)
{fex=Ifll=1}
and so if a subset A C X is bounded with M = sup,.4 ||z|] < oo,
then
A" C By (0)
Defn: Given a NVS X, the weak™ topology on X* is the weakest
topology such that each ,z € X is continuous on X™.

Remarks:
1. The weak topology on X* is is the weakest topology such that
each f € X™* is continuous on X*.

2. The weak™ topology on X* is is the weakest topology such that
each # € X := {4 : x € X} is continuous on X*. Note X C X**.

3. The weak™ topology is weaker than the weak topology which is
weaker than the norm topology.

4. The weak™® topology lives only on NVSs which are dual spaces
and therefore only on Banach spaces.

5. It lives on all reflexive Banach spaces because they are all dual
spaces.

Theorem: For an NVS X, (X, 77™) (X, T, and (X*, T weak*)
is a locally convex, Haudorff TVS.

We proved this for the norm and weak topologies last time. The
proof for weak™ is similar to proof for weak. But all three follow from
a more general result in Folland:



Defn: Let {pa faca be a collection of semi-norms on a vector space
X. The semi-norm topology T is the topology with base consisting
of all finite intersections of sets of the form:

Unzge ={r € X : po(r —20) < €}

Theorem 5.14: The semi-norm topology is a locally convex TVS.

Prop 5,16a: The semi-norm topology is Hausdorft iff for each x €
X,z # 0, there exists o € A s.t. po(x) # 0, then .

Examples of semi-norm topologies: Given an NVS X,

— Norm topology: {p.} = {|| - ||}
— Weak topology: {p.} ={|f|: f € X*|}
— Weak* topology: {p.} = {|z| : z € X}

| - || and | f| are clearly semi-norms, and
1Z|(f) == |f(x)] is a semi-norm on X*.

Proof:
Z[(f +g) = |f(2) +g(z)| < [f(@)] +|g(@)] = |2|(f) + |2|(9)

0 T

(M) = (AL ()] = AL z](f) O

To check the Hausdorff condition for each topology above:

— Norm topology: If x # 0, then ||x|| # 0.

— Weak topology: If x # 0, by Hahn—Banach Corollary, there
exists f € X*s.t. f(z) = ||z|| £ 0.

— Weak™ topology: If f € X* and f # 0, then there exists x # 0
st 2(f) = f(x) #0.

Proof of Prop 5.16a: If # # y, po(x —y) # 0, then U, ;. (1/2)pa (2—y)
and Uq y (1/2)pa (2—y) are disjoint.




The proof of Theorem 5.14 follows along the lines of how we proved
the result for the weak topology. That relied on the fact that z,, — =
iff for all f € X* f(x,) = f(2).

In fact, we needed the corresponding result for nets x;,7 € I.

For a general semi-norm topology, the proof of Theorem 5.14 is
based on:

FACT: the net x; — zx iff for all @ € A py(x — ;) — 0.
Let’s say a bit more about nets.

Defn: A directed set is a set with an ordering that is reflexive and
transitive and s.t. every pair of elements has an upper bound.

Main examples of directed sets:

— N with usual ordering

— N x N with ordering (z,y) < (2/,/) iff <2’ and y < ¢/'.

Defn: A net in a topological space (X, T ) is a map from a directed
set [ to X: 1+ x;

Defn: A net (x;);er converges to x € X, denoted x; — =z, if for
all nbhds U > x, there exists ¢ € I s.t. for all j > 4 (in the ordering
that defines the directed set), z; € U.

Recall: Characterization of continuity (Prop 4.19). f: (X, T) —
(Y, S) if for every net x; —  in X, the net f(z;) — f(z).

Note: In metric spaces, sequences can replace nets in the charac-
terization of continuity.



Lecture 32:

Given a NVS X, the weak sequential closure of a set A, denoted
A" is the collection of limit points of sequences in A.

—wks —wk ) w
Fact: A°" C A because given a convergent sequence x, — ,

with x, € A, then every nbhd U of x contains some x, and thus

intersects A. . .
Example: aset AC X st. A \ A" #0.

X = (?. Let e, be the standard basis vectors, let

A=A{en,+me,: 1 <m<n,n>2}

Glel +eg es+ 2e5 es+ 3eg eq +4deg es + deg
Slei+e5 ey + 2e5 e3+ 3es eq + 4des
dle; +eq4 ex+2e4 €3+ 3ey
3ler+e3 e+ 2e;
n 2e;+ ey
1 2 3 4 5
m

Recall that (£2)* = 2.

Claim: No sequence in A converges weakly to 0, so 0 & A,

Proof: Recall z; — 0 means that for all y € £2,
(T, y) = 0.

Let e, +mye,,, my < nj; be any sequence in A.

Case 1: my bounded

Let M be an upper bound. Let y = e; +...ep. Then
(€my + Mkeny, y) = (€my + My, €1+ ... enr) =
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1+mulen,e1+...en) > 1
and so e, + mye,, 7% 0.
Case 2: my unbounded
Then n; unbounded.

Choose a subsequence s.t. my, and ny, are strictly increasing with

Let y = > 1 €, € ¢? because my, > 1 and so

1 1
— < — < 00
2 — )
zz': M, z@: ¢
Thus 1
(€my, + Mikeny s y) = My = 1
? 1 kZ

and so Emy,, T M eny, 77£> 0.

Claim: 0 is in the weak closure of A. So, 0 € A \ﬁw’%

Proof:
Recall nbhd. basis at 0: N}_,U,i . where y',... 4 € /* and

Uyge ={z €€ [{z.y)] < e}

Now,
(em +men,y"y =y, +my,, i=1,....k

Given ¢; > 0, choose m s.t. |yl | < ¢/2 i=1, ..., kand then choose
nst. mlyt| <e€/2, i=1,..., k. Then

](em—i—men,yiﬂ <e€,1=1,...,k

So, e, + me, € AN (ﬂleUy@-,O,q)



Thus for every nbhd. U of 0, there exist m,n s.t. e, + me, €
ANU.

Thus, 0 is in the weak closure of A. [

Banach-Alaoglu Theorem: For any NVS X, the unit ball in X* is
weak™ compact.

Proof relies on Tychanoff’s Theorem: The product of compact
spaces 1s compact.

Proof of Banach-Alaoglu Theorem:

Let P = X ex|—||zl|], ||z]|], the product space with product topol-
ogy coming from the Euclidean topology on each interval [—||z||, ||z]]].
By Tychanoft’s theorem, P is compact.

Let B* denote the unit ball in X™:
B*={fe X" ||f]| <1}

Here, || f]| is of course the operator norm.

Let
7B = P, 7(f) = (f(2))rex
Note that 7(f) does indeed belong to P since ||f|| < 1 and so for
all w € X, [f(2)] < (A [|=]] < [l=[]

Also, 7 is an injection since { f(x) : € X} completely determine
f, and so T is a bijection onto its image in P.

So, B* may be regarded as a subset, namely, 7(B*) of P.

Moreover, the weak™ topology of B* agrees with the relative topol-
ogy from the product topology on P: continuity of the projections in
P on 7(B*) corresponds exactly to continuity of the maps z,z € X
on B*.
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Thus, since any closed subset of a compact space is compact, to
show that B* is weak™ compact it suffices to show that 7(B*) is
closed in the product topology:.

Observe that 7(B*) is exactly the set of all elements of P that can
be regarded as linear functionals, i.e., y € 7(B*) iff

(*) given T1,T2,T3 € X and o1, 0 € K s.t.

T3 = aT1 + QaT2, we have y,, = 1y, + aly,

— Y W

So let y € 7(B*) " We show that (*) holds as follows.
Given any € > 0,

U={2z€P:|zay = Yny| <620 = Yno| <€ 20) — | <€}

is a nbhd of y in P and thus intersects 7(B*). Let z € U N 7(B%).
Then, z,, = 12, + agz,, and so

‘yxi% — QYzy — a2y$2‘ < ’yﬁs — Rxz T a1<y$1 o Z$1> T 042(%52 o sz)’
<Yy — 25|+ || Yoy — 20y [+ |2 Yy — 225] < (14 || + |aa])
Letting € — 0, we see that

Yzg = A1Y1y + 2Yz,

Thus, y € 7(B*) and so 7(B*) is closed and thus compact. [
Note: you can simplify the last part of this argument by using
nets.
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