
Lecture 30:

Recall:

Lemma: Let W be a (norm-) closed subspace of an NVS X . Let

y ∈ X \W . Then there is an f ∈ X∗ s.t. f (y) > 0 and f |W = 0.

Theorem; A subspace of an NVS is weakly closed iff it is norm-

closed.

Proof: Every weakly closed set is norm closed.

For the converse, let W be a norm-closed subsapce of X . We must

show that W
wk

= W . The weak closure can only be larger than the

norm closure.

Suppose y ∈ Wwk \W . By the Lemma, there exists f ∈ X∗ s.t.

f (y) > 0, f |W = 0.

Then {x ∈ X : f (x) 6= 0} is a weakly open set which contains y

but is disjoint from W . Thus by Prop 2, y 6∈ Wwk
, a contradiction.

�

Theorem above can be generalized from subspaces to convex sets,

using separation theorems which are consequences of HB Theorem.

Weak convergence:

Recall that xn → x in a given topology (X, T ), means that for all

U ∈ T , there exists N s.t. for all n ≥ N xn ∈ U .

Prop: For a NVS, xn → x in the weak topology, written xn
w→ x,

iff for all f ∈ X∗, f (xn)→ f (x).

Proof:

“only if:” Suppose that xn → x in the weak topology.

Let f ∈ X∗. Then for all ε > 0, there exists N s.t. for all

n ≥ N , xn ∈ U = Uf,x,ε = {y ∈ X : |f (y) − f (x)| < ε}. Thus,

f (xn)→ f (x).
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“if:” Suffices to show that for all U in a nbhd. base at x, there

exists N s.t. for all n ≥ N xn ∈ U .

So, suffices to show that f1, . . . , fm ∈ X∗ and ε1 > 0, . . . , εm > 0,

there exists N s.t. for all n ≥ N , xn ∈ ∩mi=1Ufi,x,εi.

But this is true: by assumption, given ε1 > 0, . . . , εm > 0, choose

Ni s.t. for all n ≥ Ni, each |fi(xn) − fi(x)| < εi and so for n ≥
max(N1, . . . , Nm), xn ∈ ∩mi=1Ufi,x,εi. �

Norm convergence, written xn
n→ x, means ||xn − x|| → 0.

Note: T norm is stronger than T weak. So, norm convergence is

stronger than weak convergence.

Sanity check: if xn
n→ x in the norm topology and f ∈ X∗, then

|f (xn) = f (x)| ≤ ||f || ||xn − x|| → 0.

Example: a weakly convergent sequence that is not norm conver-

gent.

Recall (`2)∗ = `2; for x ∈ `2, x∗ ∈ (`2)∗

x∗(x) = 〈x, x∗〉 =

∞∑
i=1

xix
∗
i

Let en be the standard basis in sequence spaces.

e1 = (1, 0, 0, . . . , ), e2 = (0, 1, 0, . . . , )

For each x∗ ∈ (`2)∗,

x∗(en) = x∗n → 0

So, en
w→ 0.

But for n 6= m, ||en− em||2 =
√

2 and so en does not converge in

the norm topology.
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Theorem: For an NVS X , (X, T weak) is a locally convex (i.e., has

a base of convex sets), Haudorff TVS.

Proof:

1. TVS: Continuity of addition: if xn
w→ x and yn

w→ y, then for

all f ∈ X∗,

f (xn + yn) = f (xn) + f (yn)→ f (x) + f (y) = f (x + y)

and so xn + yn
w→ x + y.

Continuity of scalar multiplication: if xn
w→ x and λn → λ, then

then for all f ∈ X∗

f (λnxn) = λnf (xn)→ λf (x) = f (λx)

and so λnxn
w→ λx.

WARNING: We have only proven sequential continuity of vector

addition and scalar multiplication. Since the weak topology need not

be metric, this may not suffice. Can give a legitimate proof of conti-

nuity of addition and scalar multiplication, using Nets (Section 4.3).

A net xi, i ∈ I is a “generalized sequence” where I is a generalized

index set, called a directed set. More on this next time.

2. Hausdorff: By Hahn-Banach given any x 6= y, there is a f ∈ X∗
s.t. f (x − y) 6= 0. Then x ∈ Uf,x,(1/2)|f(x−y)|, y ∈ Uf,y,(1/2)|f(x−y)|,
and Uf,x,(1/2)|f(x−y)| ∩ Uf,y,(1/2)|f(x−y)| = ∅

3. Locally convex: We first claim that each Uf,x0,ε is convex:

suppose x, y ∈ Uf,x0,ε. Let t ∈ [0, 1]. Then,

|f (tx + (1− t)y − x0)| = |(tf (x− x0) + (1− t)f (y − x0)||

≤ t|f (x− x0)| + (1− t)|f (y − x0)| < tε + (1− t)ε = ε;

so, tx + (1− t)y ∈ Uf,x0,ε and so Uf,x0,ε is convex.
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Since intersections of convex sets are convex and sets of the form

∩ni=1Ufi,xi,εi form a base, we have a base of convex sets. �

Theorem: For an NVS X , (X, T norm) is a locally convex, Haudorff

TVS.

Proof: we already proved TVS. Hausdorf follows from fact that

norm topology is metric. Locally convex proven similarly to locally

convex for weak topology using norm instead of linear functionals.
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Lecture 31:

Recall:

B1(0) =
⋂

{f∈X∗:||f ||=1}

{x : |f (x)| ≤ 1}

This implies

BM(0) =
⋂

{f∈X∗:||f ||=1}

{x : |f (x)| ≤M}

and so if a subset A ⊂ X is bounded with M = supx∈A ||x|| <∞,

then

A
wk ⊆ BM(0)

Defn: Given a NVS X , the weak* topology on X∗ is the weakest

topology such that each x̂, x ∈ X is continuous on X∗.

Remarks:

1. The weak topology on X∗ is is the weakest topology such that

each f ∈ X∗∗ is continuous on X∗.

2. The weak* topology on X∗ is is the weakest topology such that

each x̂ ∈ X̂ := {x̂ : x ∈ X} is continuous on X∗. Note X̂ ⊆ X∗∗.

3. The weak* topology is weaker than the weak topology which is

weaker than the norm topology.

4. The weak* topology lives only on NVSs which are dual spaces

and therefore only on Banach spaces.

5. It lives on all reflexive Banach spaces because they are all dual

spaces.

Theorem: For an NVS X , (X, T norm), (X, T wk, and (X∗, T weak∗)
is a locally convex, Haudorff TVS.

We proved this for the norm and weak topologies last time. The

proof for weak* is similar to proof for weak. But all three follow from

a more general result in Folland:
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Defn: Let {pα}α∈A be a collection of semi-norms on a vector space

X . The semi-norm topology T is the topology with base consisting

of all finite intersections of sets of the form:

Uα,x0,ε := {x ∈ X : pα(x− x0) < ε}

Theorem 5.14: The semi-norm topology is a locally convex TVS.

Prop 5,16a: The semi-norm topology is Hausdorff iff for each x ∈
X , x 6= 0, there exists α ∈ A s.t. pα(x) 6= 0, then .

Examples of semi-norm topologies: Given an NVS X ,

– Norm topology: {pα} = {|| · ||}
– Weak topology: {pα} = {|f | : f ∈ X∗|}
– Weak* topology: {pα} = {|x̂| : x ∈ X}
|| · || and |f | are clearly semi-norms, and

|x̂|(f ) := |f (x)| is a semi-norm on X∗.

Proof:

|x̂|(f + g) = |f (x) + g(x)| ≤ |f (x)| + |g(x)| = |x̂|(f ) + |x̂|(g)

|x̂|(λf ) = |λ| |f (x)| = |λ| |x̂|(f ) �

To check the Hausdorff condition for each topology above:

– Norm topology: If x 6= 0, then ||x|| 6= 0.

– Weak topology: If x 6= 0, by Hahn–Banach Corollary, there

exists f ∈ X∗ s.t. f (x) = ||x|| 6= 0.

– Weak* topology: If f ∈ X∗ and f 6= 0, then there exists x 6= 0

s.t. x̂(f ) = f (x) 6= 0.

Proof of Prop 5.16a: If x 6= y, pα(x−y) 6= 0, then Uα,x,(1/2)pα(x−y)
and Uα,y,(1/2)pα(x−y) are disjoint.
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The proof of Theorem 5.14 follows along the lines of how we proved

the result for the weak topology. That relied on the fact that xn
w→ x

iff for all f ∈ X∗ f (xn)→ f (x).

In fact, we needed the corresponding result for nets xi, i ∈ I .

For a general semi-norm topology, the proof of Theorem 5.14 is

based on:

FACT: the net xi → x iff for all α ∈ A pα(x− xi)→ 0.

Let’s say a bit more about nets.

Defn: A directed set is a set with an ordering that is reflexive and

transitive and s.t. every pair of elements has an upper bound.

Main examples of directed sets:

– N with usual ordering

– N× N with ordering (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′.

Defn: A net in a topological space (X, T ) is a map from a directed

set I to X : i 7→ xi

Defn: A net (xi)i∈I converges to x ∈ X , denoted xi → x, if for

all nbhds U 3 x, there exists i ∈ I s.t. for all j ≥ i (in the ordering

that defines the directed set), xj ∈ U .

Recall: Characterization of continuity (Prop 4.19). f : (X, T )→
(Y,S) if for every net xi → x in X , the net f (xi)→ f (x).

Note: In metric spaces, sequences can replace nets in the charac-

terization of continuity.
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Lecture 32:

Given a NVS X , the weak sequential closure of a set A, denoted

A
wks

is the collection of limit points of sequences in A.

Fact: A
wks ⊂ A

wk
because given a convergent sequence xn

w→ x,

with xn ∈ A, then every nbhd U of x contains some xn and thus

intersects A.

Example: a set A ⊂ X s.t. A
wk \ Awks 6= ∅.

X = `2. Let en be the standard basis vectors, let

A = {em + men : 1 ≤ m < n, n ≥ 2}

6 e1 + e6 e2 + 2e6 e3 + 3e6 e4 + 4e6 e5 + 5e6
5 e1 + e5 e2 + 2e5 e3 + 3e5 e4 + 4e5
4 e1 + e4 e2 + 2e4 e3 + 3e4
3 e1 + e3 e2 + 2e3

n 2 e1 + e2
1 2 3 4 5

m

Recall that (`2)∗ = `2.

Claim: No sequence in A converges weakly to 0, so 0 6∈ Awks
.

Proof: Recall xk
w→ 0 means that for all y ∈ `2,

〈xk, y〉 → 0.

Let emk
+ mkenk , mk < nk be any sequence in A.

Case 1: mk bounded

Let M be an upper bound. Let y = e1 + . . . eM . Then

〈emk
+ mkenk, y〉 = 〈emk

+ mkenk, e1 + . . . eM〉 =
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1 + mk〈enk, e1 + . . . eM〉 ≥ 1

and so emk
+ mkenk 6

w→ 0.

Case 2: mk unbounded

Then nk unbounded.

Choose a subsequence s.t. mki and nki are strictly increasing with

i

Let y =
∑

i
1
mki
enki ∈ `

2 because mki ≥ i and so∑
i

1

m2
ki

≤
∑
i

1

i2
<∞

Thus

〈emki
+ mkienki , y〉 ≥ mki

1

mki

= 1

and so emki
+ mkienki 6

w→ 0.

Claim: 0 is in the weak closure of A. So, 0 ∈ Awk \ Awks

Proof:

Recall nbhd. basis at 0: ∩ki=1Uyi,0,εi where y1, . . . , yk ∈ `2 and

Uyi,0,εi = {x ∈ `2 : |〈x, yi〉| < εi}

Now,

〈em + men, y
i〉 = yim + myin, i = 1, . . . , k

Given εi > 0, choose m s.t. |yim| < εi/2 i =1, . . . , k and then choose

n s.t. m|yin| < εi/2, i =1, . . . , k . Then

|〈em + men, y
i〉| < εi, i = 1, . . . , k

So, em + men ∈ A ∩ (∩ki=1Uyi,0,εi)
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Thus for every nbhd. U of 0, there exist m,n s.t. em + men ∈
A ∩ U .

Thus, 0 is in the weak closure of A. �

Banach-Alaoglu Theorem: For any NVS X , the unit ball in X∗ is

weak* compact.

Proof relies on Tychanoff’s Theorem: The product of compact

spaces is compact.

Proof of Banach-Alaoglu Theorem:

Let P = ×x∈X [−||x||, ||x||], the product space with product topol-

ogy coming from the Euclidean topology on each interval [−||x||, ||x||].
By Tychanoff’s theorem, P is compact.

Let B∗ denote the unit ball in X∗:

B∗ = {f ∈ X∗ : ||f || ≤ 1}

Here, ||f || is of course the operator norm.

Let

τ : B∗ → P, τ (f ) = (f (x))x∈X

Note that τ (f ) does indeed belong to P since ||f || ≤ 1 and so for

all x ∈ X , |f (x)| ≤ ||f || ||x|| ≤ ||x||.
Also, τ is an injection since {f (x) : x ∈ X} completely determine

f , and so τ is a bijection onto its image in P .

So, B∗ may be regarded as a subset, namely, τ (B∗) of P .

Moreover, the weak* topology of B∗ agrees with the relative topol-

ogy from the product topology on P : continuity of the projections in

P on τ (B∗) corresponds exactly to continuity of the maps x̂, x ∈ X
on B∗.
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Thus, since any closed subset of a compact space is compact, to

show that B∗ is weak* compact it suffices to show that τ (B∗) is

closed in the product topology.

Observe that τ (B∗) is exactly the set of all elements of P that can

be regarded as linear functionals, i.e., y ∈ τ (B∗) iff

(∗) given x1, x2, x3 ∈ X and α1, α2 ∈ K s.t.

x3 = α1x1 + α2x2, we have yx3 = α1yx1 + α2yx2

So let y ∈ τ (B∗)
wk∗

. We show that (*) holds as follows.

Given any ε > 0,

U := {z ∈ P : |zx3 − yx3| < ε, |zx2 − yx2| < ε, |zx1 − yx1| < ε}

is a nbhd of y in P and thus intersects τ (B∗). Let z ∈ U ∩ τ (B∗).

Then, zx3 = α1zx1 + α2zx2 and so

|yx3 − α1yx1 − α2yx2| ≤ |yx3 − zx3 − α1(yx1 − zx1)− α2(yx2 − zx2)|

≤ |yx3− zx3|+ |α1| |yx1− zx1|+ |α2| |yx2− zx2| < ε(1 + |α1|+ |α2|)
Letting ε→ 0, we see that

yx3 = α1yx1 + α2yx2

Thus, y ∈ τ (B∗) and so τ (B∗) is closed and thus compact. �
Note: you can simplify the last part of this argument by using

nets.
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