Lecture 3:

. 7 4

At end of last lecture, we were in the course of proving that $(B(\Omega), ||\cdot||_{sup})$ is a Banach space.

We proved:

a. $B(\Omega)$ is a vector space, as a subspace of K^{Ω} . $\mathcal{K} \supset \mathcal{K} \supset \mathcal{K}$

Now we prove:

b. $||f|| = ||f||_{sup}$ is a norm and c. The norm metric is complete.

Proof of b:

- Positivity: clearly $||f|| \ge 0$ and ||f|| = 0 iff f = 0.
- Homegeneity: $||\lambda f|| = |\lambda|||f||$,
- Subaddivitity:

$$||f+g|| = \sup\{|f(x)+g(x)| : x \in \Omega\} \le \sup\{|f(x)|+|g(x)| : x \in \Omega\}$$

$$\le \sup(||f||+||g||) = ||f||+||g||$$

Intuitively, ||f+g|| may be less than ||f|| + ||g|| because of cancellations.

c. The norm metric is complete.

Time out for a general NVS fact:

Lemma: For any Cauchy sequence $\{x_n\}$ in a NVS, the sequence $||x_n||$ converges in \mathbb{R} and in particular is bounded.

Proof: By reverse triangle inequality,

$$|||x_n|| - ||x_m||| \le ||x_n - x_m||$$

and so $\{||x_n||\}$ is Cauchy in \mathbb{R} and thus converges in \mathbb{R} . \square

Note: convergence in $B(\Omega)$ is the topology of uniform convergence: $||f_n - f|| \to 0$ iff f_n converges uniformly to f. We sometimes denote the norm by $||\cdot||_u$ instead of $||\cdot||_{\sup}$.

Proof of completeness of $B(\Omega)$: Let f_n be Cauchy in $B(\Omega)$. In particular, for each fixed $x \in \Omega$, the sequence $f_n(x)$ is Cauchy in \mathbb{R} because:

$$|f_n(x) - f_m(x)| \le \sup_{y} |f_n(y) - f_m(y)| = ||f_n - f_m||$$

Since \mathbb{R} is complete, $f_n(x)$ converges to some $a_x \in \mathbb{R}$. Define $f(x) = a_x$.

Will show that 1) $f \in B(\Omega)$ and 2) $||f - f_n|| \to 0$.

Proof of 1:

$$|f(x)| = \lim_{n} |f_n(x)| \le \sup_{n} |f_n(x)| \le \sup_{n} ||f_n|| < \infty$$

by Lemma above. So, $f \in B(X)$.

Proof of 2 (uniform Cauchy + pointwise convergence implies uniform convergence)

Let $\epsilon > 0$. Let N be s.t. for all $m, n \geq N$, $||f_n - f_m|| < \epsilon$. For fixed $x \in \Omega$, choose $m = m_x \geq N$ s.t. $|f_m(x) - f(x)| < \epsilon$. Then

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

$$\le ||f_n - f_m|| + |f_m(x) - f(x)| < 2\epsilon.$$

and so

$$||f_n - f|| = \sup_{x} |f_n(x) - f(x)| \le 2\epsilon.$$

So, $||f - f_n|| \to 0$. \square

Alternative proof of 2 (without ϵ 's):

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \limsup_{m \to \infty} ||f_n - f_m||$$

Thus,

$$||f_n - f|| \le \limsup_{m \to \infty} ||f_n - f_m||$$

Thus,

$$\lim_{n\to\infty} ||f_n - f|| \le \lim_{n\to\infty} \limsup_{m\to\infty} ||f_n - f_m|| = 0. \square$$

Time out for another general Banach space fact:

Proposition: A subspace of a Banach space is a Banach space iff it is closed.

Proof: Use:

- A subspace Y of a Banach space X inherits the NVS of X.
- A subset of a complete metric space is complete iff it is closed.
 - 3. Let Ω be a metric space.

$$BC(\Omega) = \{bounded\ continuous\ f: \Omega \to K\}$$

is a Banach space with sup norm.

Proof:

- $a.BC(\Omega)$ is a subspace of $B(\Omega)$: check closure of vector addition and scalar multiplication.
- b. $BC(\Omega)$ is closed in $B(\Omega)$: A uniform limit of cts. functions is cts. And a uniform limit of bounded functions is bounded. So $BC(\Omega)$ is a closed and therefore a complete subspace of $B(\Omega)$. \square

4. Let Ω be a compact metric space. Continuous functions, $C(\Omega)$, on Ω , forms a Banach space.

Proof: $C(\Omega) = BC(\Omega)$ since Ω is compact.

5. Let Ω be a metric space. Continuous functions that vanish at infinity:

$$C_0(\Omega) = \{ f: X \to R: cts, \ \forall \epsilon > 0 \ \exists \ \text{compact} \ L \subset \Omega: \ \forall x \not\in L \ |f(x)| < \epsilon \}$$
 is a Banach space with sup norm.
$$\text{The is not compact}$$

Proof:

a. check $C_0(\Omega)$ is a subspace of $BC(\Omega)$: check closure of vector addition and scalar multiplication.

- vector addition: given $f, g \in C_0(\Omega)$, f + g is cts. Given $\epsilon > 0$, let $L_{f,\epsilon}, L_{g,\epsilon}$ be the corresponding compact sets. Then $L := L_{f,\epsilon/2} \cup L_{g,\epsilon/2}$ is conpact and for $x \notin L$, both $|f(x)|, |g(x)| < \epsilon$ and so $|f(x) + g(x)| < \epsilon$

- scalar multiplication: $L_{\lambda f,\epsilon} = L_{f,\epsilon/|\lambda|}$.

b. check $C_0(\Omega)$ is a closed subset of $BC(\Omega)$:

Let $f_n \in C_0(\Omega)$ s.t. f_n converges uniformly to f. Then f is cts.

Let $\epsilon > 0$. Then for some N, $||f_N - f|| < \epsilon$.

Then there is a compact set $L_{f_N,\epsilon}$ for f_N and ϵ , i.e., $|f_N(x)| < \epsilon \ \forall x \notin L_{f_N,\epsilon}$.

Then for $x \not\in L_{f_N,\epsilon}$,

$$|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le ||f - f_N|| + |f_N(x)| < 2\epsilon$$

So, $f \in C_0(\Omega)$, and so $C_0(\Omega)$ is a closed subspace of $BC(\Omega)$ and thus is a Banach space. \square

6. Continuous functions with compact support:

Defn: The support of a function f is $supp(f) = \overline{\{x \in X : f(x) \neq 0\}}$.

$$C_c(\Omega) = \{f : \Omega \to R : \operatorname{cts} s.t. \operatorname{supp}(f) \text{ is compact.} \}$$

 $C_c(\Omega) \subset C_0(\Omega)$ because for any $f \in C_c(\Omega)$ and $x \notin supp(f), f(x) = 0$.

And $C_c(\Omega)$ is a subspace of $C_0(\Omega)$ because $supp(f+g) \subset supp(f) \cup supp(g)$ and thus is closed subset of the union of two compact sets, and thus is compact.

Thus $C_c(\Omega)$ inherits NVS from $C_0(\Omega)$.

But if Ω is not compact, then $C_c(\Omega)$ need not be a Banach space because it need not be closed:

Example: $\Omega = \mathbb{R}$;

$$f_n(x) = \begin{cases} e^{-x^2} & x \in [-n, n] \\ \text{straight line from } (n, e^{-n^2}) \text{ to } (n+1, 0) \\ \text{straight line from } (-n, e^{-n^2}) \text{ to } (-n-1, 0) \\ 0 & x \notin [-n-1, n+1] \end{cases}$$

Then $f_n \in C_c(\mathbb{R})$ converges uniformly to e^{-x^2} which does not have

compact support. \square

In fact, $C_c(\mathbb{R})$ is dense in $C_0(\mathbb{R})$.

In a finite-dimensional space all subspaces are closed and the only subspace. But, as we have seen, in an infinite-dimensional NVS, there can be proper dense subspaces (in particular, not closed).

Lecture 4:

F,

Recall Banach spaces: $B(\Omega, ||\cdot||_{\sup})$ and its subspaces

with Ω metric: $BC(\Omega)$, $C(\Omega)$ (with Ω compact), $C_0(\Omega)$ and the NVS $C_c(\Omega)$.

Note: Proof of comleteness of $B(\Omega)$, showing that $||f_n - f|| \to 0$ (uniform convergence), can be simplified (no ϵ 's needed).

One way or another, the idea is to show "uniform Cauchy + pointwise convergence implies uniform convergence."

- 7. Let $\Omega = \mathbb{N}$ with discrete metric. All subsets are open.
- a. $B(\mathbb{N}) = \ell_{\infty}$ is the set of bounded sequences (x_1, x_2, \ldots) .
- b. $BC(\mathbb{N}) = B(\mathbb{N}) = \ell_{\infty}$ because for the discrete metric, all subsets are open and so all functions on \mathbb{N} are continuous.
 - c. $C_0(\mathbb{N}) = c_0$ is the set of sequences that converge to 0.

Proof: For any $S \subset \mathbb{N}$, $\{\{s\} : x \in S\}$ is an open cover for of S that has no proper open subcover. Thus, S is compact iff it is finite.

If $x = (a_1, a_2, ...) \in c_0$, then for all $\epsilon > 0$, there is a finite set $S \subset \mathbb{N}$ s.t. for $s \in \mathbb{N} \setminus S$, $|x_s| \le \epsilon$ and thus for all $s \ge |S|$, $|x_s| \le \epsilon$. Thus $a_n \to 0$.

Conversely, if $a_n \to 0$, then for all $\epsilon > 0$, there exists N s.t. for all s > N, $|x_s| < \epsilon$ and so $x \in c_0$.

d. $C_c(\mathbb{N}) = c_c$ is the set of sequences that are eventually 0, because the compact sets are the finite sets.

Direct proof that c_c is not Banach: let $a_n = 1/n$ and $x = (a_1, a_2, \ldots) \in c_0$. Let $x^n = (a_1, \ldots, a_n, 0, \ldots)$. Then each $x^n \in c_c$ and $x^n \to x$. So, c_c is not closed and in fact is a proper dense subspace of c_0 .

8. $C^1([0,1])$: the set of all real-valued ctsly diffble. functions on [0,1] (including one-sided limits at the endpoints)

1

 $C^1([0,1])$ is a subspace of C([0,1]) and thus inherits the sup-norm as an NVS $(C^1([0,1]), ||\cdot||_{\sup})$.

But it is not complete because it is not closed: the uniform limit of C^1 functions need not be C^1 .

Example: approximate f(x) = |x| uniformly by C^1 functions.

In fact, $C^1([0,1])$ is a dense subspace of C([0,1]) (use Stone-Weirstrass).

However, $||f||:=||f||_{\sup}+||f'||_{\sup}$ is a norm that makes $C^1([0,1])$ complete

Proof: If f_n is Cauchy in $(C^1([0,1]), ||\cdot||)$, then both f_n and f'_n are uniformly Cauchy and thus $f_n \to f$, $f'_n \to g$ uniformly for some $f, g \in C([0,1])$. Then from Math 321, g = f' and so $||f_n - f|| \to 0$.

9. Let D be the open unit disk and \overline{D} the closed unit disk in \mathbb{C} .

 $X=\{f:\overline{D}\to\overline{D}: f \text{ analytic on D and extends ctsly to }\overline{D}\}$ is a Banach space, with the sup norm.

– Proof: X is a subspace of $C(\overline{D})$ because a linear combination of analytic functions is analytic and is a closed subspace because a uniform limit of analytic functions is analytic. \square

Time out for a defn and a theorem:

Defn: Let X be a NVS and $(x_n) \in X$. The series $\sum_{n=1}^{\infty} x_n$ converges if the sequence of partial sums converges to some $x \in X$. The series converges absolutely if $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Note that on \mathbb{R} , abs. convergence implies convergence and this is consistent with fact that \mathbb{R} is complete. Of course, even on \mathbb{R} , convergence does not imply abs. convergence.

Theorem (Theorem 5.1): A NVS is complete iff every absolutely convergent series is convergent.

Let x_n be a Cauchy sequence. For each j, choose N_j such that for all $m, n \geq N_j, ||x_m - x_n|| \leq 2^{-j}$. We may assume that the sequence N_i is strictly increasing.

Let $y_j = x_{N_{j+1}} - x_{N_j}$. Then y_j is absolutely convergent because the series $\sum_{j=1}^{\infty} ||y_j||$ is nonnegative with bounded partial sums

$$\sum_{j=1}^{K} ||y_j|| \le \sum_{j=1}^{K} 2^{-j} \le 1,$$

So $x_{N_{K+1}} - x_{N_1} = \sum_{j=1}^K y_j \rightarrow y$ for some y. This means that $\lim_{j\to\infty} x_{N_{j+1}} = y + x_{N_1}$, and so x_n has a convergent subsequence. But any Cauchy sequence with a convergent subsequence is conver-Sequence Country Consequences

Series Ass. Conv. Convey gent.

"only if:"

Let x_n be absolutely convergent. Thus, for all $\epsilon > 0$, there exists N such that $\sum_{j=N}^{\infty} ||x_n|| < \epsilon$. Let $y_n = \sum_{j=1}^n x_j$. Then y_n is Cauchy because for $m \geq n \geq N$,

$$||y_m - y_n|| = ||\sum_{j=n+1}^m x_j|| \le \sum_{j=n+1}^m ||x_j|| \le \sum_{j=N}^\infty ||x_j|| < \epsilon$$

Since the space is complete, y_n converges and this mean that $\sum_{j=1}^{N} x_j$ is convergent.

Cord Acres

Toe You leev Shayan

Lecture 5:

10. Defn: For $p \ge 1$, $L^p(\Omega, \mu)$ - spaces:

$$L^{p}(\Omega,\mu) = \{ f : \Omega \to K : \int_{\Omega} |f|^{p} d\mu < \infty \}$$

for σ -finite measure space (Ω, μ) .

Recall that $f \in L^p$ is really an equivalence class mod $\mu - a.e.$

Equivalence classes mod 0. Stephen G. showed that:

$$||f||_p := (\int_{\Omega} |f|^p d\mu)^{1/p}$$

is well defined on equivalence classes and that

 L^p is a Banach space:

- a. L^p is a well-defined vector space, in particular closed under addition and scalar multiplication; proven by Stephen G.
 - b. L^p is a NVS.
 - c. L^p is complete.

Proof:

i. Positivity: Clearly, $||f||_p \ge 0$ and $||0||_p = 0$. If $||f||_p = 0$, then $|f|^p = 0$ a.e. and so |f| = 0 a.e.

ii.

$$||\lambda f||_p = (\int |\lambda f|^p d\mu)^{1/p} = |\lambda|(\int |f|^p d\mu)^{1/p} = |\lambda|||f||_p$$

iii. Minkowski inequality: Stepehen G. showed $||f+g||_p \leq ||f||_p + ||g||_p$.

So, L^p is a NVS. \square

c. L^p is complete and therefore a Banach space.

Proof: (Theorem 6.6 of Folland. Uses Theorem 5.1).

Suppose that $f_k \in L^p$ is absolutely convergent, i.e., $\sum_{1}^{\infty} ||f_k||_p = B < \infty$,

We want to show that there exists some $F \in L^p$ s.t.

$$||F - \sum_{1}^{n} f_k||_p \to 0$$

Guess: $F = \sum_{1}^{\infty} f_k$. Must show:

1. $F \in L^p$ and in particular F is finite a.e.

2.

$$||F - \sum_{1}^{n} f_k||_p \to 0$$

Let

$$G_n = \sum_{1}^{n} |f_k|, \ G = \sum_{1}^{\infty} |f_k| = \lim_{n} G_n$$

which is a (possibly extended) real-valued measurable function. By Minkowski,

$$||G_n||_p \le \sum_{1}^{n} ||f_k||_p \le B^{-s}$$

and so for all n,

$$\int G_n^p \le B^p$$

Since $G_n^p \uparrow G^p$, by MCT,

$$\int G^p = \lim_n \int G_n^p \le B^{p^{-1}} \int_{-\infty}^{\infty} f$$

Thus, $G \in L^p$ and in particular, G is finite a.e.

Since G is finite a.e., the series $F := \sum_{1}^{\infty} f_k(x)$ converges absolutely and thus F converges a.e. and so is finite a.e.

ar.

Since $|F| \leq G$, $F \in L^p$. This gives 1 above.

For 2 above:

$$|F - \sum_{1}^{n} f_k|^p \le (|F| + \sum_{1}^{n} |f_k|)^p \le (2G)^p \in L^1$$

Since $\sum_{1}^{n} f_k \to F$ a.e., $|F - \sum_{1}^{n} f_k|^p \to 0$ a.e. By DCT

$$||F - \sum_{1}^{n} f_k||_p = (\int |F - \sum_{1}^{n} f_k|^p)^{1/p} \to 0$$

Examples: $\ell^p = \ell^p(N)$ are special examples of L^p spaces, with counting measure on \mathbb{N} :

$$\ell^p = \{(a_1, a_2, \ldots) : \sum_n |a_n|^p < \infty\}$$

10. L^{∞} is a Banach space. (with essential sup norm, $||f||_{\infty}$, which is well-defined on equiv. classes of functions).

$$||f||_{\infty} = \inf\{a \ge 0 : \mu(|f|^{-1}(a, \infty)) = 0\}$$

 $L^{\infty}(\Omega, \mu)) = \{f : ||f||_{\infty} < \infty\}.$

Facts about L^{∞} (Stephen G.):

- 1. $||f||_{\infty}$ is well-defined on equivalence classes in $L^{\infty}(\Omega, \mu)$) because $||f||_{\infty}$ is insensitive to changes on sets of measure zero.
- 2. The inf is achieved, i.e., $\mu(|f|^{-1}(||f||_{\infty},\infty))=0$.

3.
$$|f| \le ||f||_{\infty} \mu - a.e. \text{ and } ||f||_{\infty} \le \sup |f|$$

4. For $f \in L^{\infty}$, there exists $g = f \mu$ -a.e. s.t.

$$||f||_{\infty} = \sup |g|$$

namely,
$$g := f \chi_{f^{-1}(-\infty, ||f_{\infty}||])}$$

- 5. L^{∞} is a vector space (check that addition and scalar multiplication are well-defined, i.e., are insensitive to changes on sets of measure zero).
- 6. $(L^{\infty}, ||\cdot||_{\infty})$ is an NVS: Positivity and Homogeneity are fairly obvious and Stephen proved Minkowski for L^{∞} :

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

Exercise: show that $L^{\infty}(\Omega, \mu)$ is complete, and hence Banach, by modifying our proof that $B(\Omega)$ is complete.

Note: Here, we have shown completeness of L^{∞} by modifying the proof of completeness of ℓ_{∞} . But completeness of ℓ_{∞} is a corollary of completeness of L^{∞} because $\ell_{\infty} = L^{\infty}(\mathbb{N}, \mu)$ where μ is counting measure on \mathbb{N} . So, we could have started by proving $L^{\infty}(\Omega, \mu)$ is Banach and then gotten completeness of ℓ_{∞} and other sequence spaces.

Recall that any two norms on a finite-diml. space are equivalent.

Example of inequivalent norms on the same vector space: $(C^1, ||\cdot||_{\sup}), (C^1, ||\cdot||_{C^1})$ because one is not complete and the other is complete.

Non-compactness of unit ball:

For a subset Y of a metric space X and $x \in X$

$$d(x,Y) := \inf_{y \in Y} d(x,y)$$

Proposition d(x, Y) = 0 iff $x \in \overline{Y}$.

Proof: $d(x,Y) = 0 \Leftrightarrow \text{there exists } y_n \in Y \text{ s.t. } y_n \to x \Leftrightarrow x \in \overline{Y}.$

Corollary: If Y is closed and $x \notin Y$, then d(x, Y) > 0.

Q: Let X be an NVS, Y a closed subspace of X. What is

$$d_{max} := \sup_{x \in X: \ ||x|| = 1} d(x, Y)?$$

Proposition: $d_{max} = 1$.

We will prove this next time and will use it to prove that the unit ball in any infinite-dimensional NVS X is not compact.