Lecture 3:
At end of last lecture, we were in the course of proving that

(B(€2),]] - ||sup) is & Banach space.
We proved:
a. B((2) is a vector space, as a subspace of K. K= K or C

Now we prove:
b. || fI| = || f||sup is @ norm and c. The norm metric is complete.

Proof of b:
— Positivity: clearly ||f|| > 0 and ||f|| = 0 iff f = 0.

— Homegeneity: [[Af]] = [Al[|f]],
— Subaddivitity:
1f+gll = sup{|f(z)+g(z)| : © € O} < sup{| f(z)|+]g(z)| : @ € O}

< sup(|[f]] + [lgll) = I/1] + llgl|

Intuitively, || f + g|| may be less than || f|| + ||g|| because of cancel-
lations.

c. The norm metric is complete.
Time out for a general NVS fact:

Lemma: For any Cauchy sequence {x,} in a NVS, the sequence
||n|| converges in R and in particular is bounded.
Proof: By reverse triangle inequality,

| Hanll = llzml] | < [lzn — 2l

and so {||z,||} is Cauchy in R and thus converges in R. O

Note: convergence in B(§2) is the topology of uniform convergence:
|| fr— f|| = 0iff f,, converges uniformly to . We sometimes denote
the norm by || - ||, instead of || - ||sup -
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Proof of completeness of B(Q2): Let f, be Cauchy in B(2). In
particular, for each fixed x € €, the sequence f,(x) is Cauchy in R
because:

[fa(@) = fm()] < sup | fuly) = fm(y)] = [|fn = finll

Y

Since R is complete, f,,(x) converges to some a, € R. Define f(x) =
aﬂ:

Will show that 1) f € B(Q) and 2) ||f — ful| — 0.
Proof of 1:

|f(z)] = lim | fy(z)] < SUp [fal@)] < SUp | full < 00

by Lemma above. So, f € B(X).

Proof of 2 (uniform Cauchy + pointwise convergence implies uni-

form convergence)
Let € > 0. Let N be s.t. for all m,n > N, ||fn — fu]| < e For
fixed z € Q, choose m =my, > N s.t. |fi.(z) — f(x)| < €. Then

<||fo = fml| + | fn(m) = f(2)] < 2e.

and so

o= fll = sup | fulz) — flz)] < 2.

SO; ”f - fn” — 0. 0
Alternative proof of 2 (without €s):

@) = F(@)| = i |fafa) = fu(@)| < lmsup | fa — ful

m—o0
Thus,
/o = fI] < limsup [[fn — fmi|

mM—00
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Thus,
/o= £l < lim limsup ||, — ful| = 0. O

lim
=00 m—00
Time out for another general Banach space fact:

Proposition: A subspace of a Banach space is a Banach space iff
1t is closed.

Proof: Use:
— A subspace Y of a Banach space X inherits the NVS of X

— A subset of a complete metric space is complete iff it is closed.

L]

3. Let {2 be a metric space.
BC () = {bounded continuous f : Q) — K}

1s & Banach space with sup norm.

Proof:
a.BC((2) is a subspace of B(Q): check closure of vector addition
and scalar multiplication.

b. BC(2) is closed in .B(€): A uniform limit of cts. functions
is c¢ts. And a uniform limit of bounded functions is bounded. So
BC(£2) is a closed and therefore a complete subspace of B(Q). O

4.Let §) be a compact metric space. Continuous functions, C(12),
on {2, forms a Banach space.

Proof: C(§2) = BC(Q) since ) is compact.

5. Let ) be a metric space. Continuous functions that vanish at
infinity:
Co(2) ={f: X = R: cts, Ve > 0Fcompact L C Q: Yz & L |f(z)]| < €}
is a Banach space with sup norm. fr Ja Consirils é@ [) |




Proof:
a. check Cy(£2) is a subspace of BC({?):
check closure of vector addition and scalar multiplication.

— vector addition: given f,g € Cy(Q?), f + ¢ is cts. Given € > 0,
let Ly, Ly, be the corresponding compact sets. Then L := Ly o U
Lgeso is conpact and for z € L, both |f(z )l lg(x)| < € and 50
@) + ool < o el (F75 )

— scalar multiplication: Lyye = Ly |x-
b. check Cy(?) is a closed subset of BC(S2):

Let f, € Co(Q) s.t. fr, converges uniformly to f. Then f is cts.
Let € > 0. Then for some N, ||fv — f|| < €.
e N

Then there is a compact set Ly,  for fy and e,

Le, |fn(z)| <eVae & Ly, ..
Then for x & Ly, ,

(@) < [f(2) = fv(@)] + [fn(@)] < If = Sl + [Fn(@)] < 2

So, f € Cy(R), and so Cy(R) is a closed subspace of BC(S2) and

thus is a Banach space. [
6. Continuous functions with compact support:
Defn: The support of a function f is supp(f) = {z € X : f(x) # 0}.

Ce() ={f:Q—= R: cts s.t. supp(f) is compact.}
C.(Q) C Cy(R) because for any f € C,(Q) and z & supp(f), f(z) =
0.

And C,(Q2) is a subspace of Cy(£2) because supp(f+g) C supp(f) U supp(g)
and thus is closed subset of the union of two compact sets, and thus
1s compact.
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Thus C,(2) inherits NVS from Cy(2).

But if €2 is not compact, then C,(€2) need not be a Banach space
because it need not be closed:

Example: €2 = R;

( e T € [—n,n]

straight line from (n,e™") to (n + 1,0)
straight line from (—n, e ™) to (—n — 1,0)
0 ré&|-n—1,n+1]

fn(x) = <

\

Then f, € C,(R) converges uniformly to e~*" which does not have

In fact, C.(R) is dense in Cy(R). / n

In a finite-dimensional space all subspaces are closed and the only

compact support. []

subspace. But, as we have seen, in an infinite-dimensional NVS,
there can be proper dense subspaces (in particular, not closed).
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Lecture 4:

Recall Banach spaces: B(S2, || - ||sup) and its subspaces

with €2 metric: BC(Q), C(2) (with Q compact), Cy(€2) and the
NVS C.().

Note: Proof of comleteness of B((2), showing that || f,, — f|| — 0
(uniform convergence), can be simplified (no €’s needed).

One way or another, the idea is to show “uniform Cauchy + point-
wise convergence implies uniform convergence.”

7. Let Q = N with discrete metric. All subsets are open.
a. B(N) =/, is the set of bounded sequences (1, g, . . .).

b. BC(N) = B(N) = /{ because for the discrete metric, all
subsets are open and so all functions on N are continuous.

c. Co(N) = ¢ is the set of sequences that converge to 0.

Proof: For any S C N, {{s} : z € S} is an open cover for of S
that has no proper open subcover. Thus, S is compact iff it is finite.

If £ = (a1,as,...) € ¢y, then for all € > 0, there is a finite set
S CNst. for s € N\ S, |5 < eand thus for all s > |S], |z, < €
Thus a,, — 0.

Conversely, if a, — 0, then for all € > 0, there exists N s.t. for
all s > N, |zs| < € and so z € c.

d. C.(N)) = ¢ is the set of sequences that are eventually 0,
because the compact sets are the finite sets.

Direct proof that c. is not Banach: let a, = 1/n and z =
(a1,a2,...) € cp. Let 2™ = (ay,...,a,,0,...). Then each z" € ¢,
and z" — . So, ¢, is not closed and in fact is a proper dense
subspace of cg.
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8. C'([0,1]): the set of all real-valued ctsly diffble. functions on
10, 1] (including one-sided limits at the endpoints)

C'([0,1]) is a subspace of C([0, 1]) and thus inherits the sup-norm
as an NVS (C([0, 1)), ||+ ||sup)-

But it is not complete because it is not closed: the uniform limit
of O functions need not be G,

Example: approximate f(z) = |z| uniformly by C* functions.
C ( C" )/ Q)
e

In fact, C'([0,1]) is a dense subspace of C/([0,1]) (use Stone-
Weirstrass).

However, {| f|] := || f{lsup + | f'||sup is & norm that makes C*([0, 1])
complete
Proof: If f,, is Cauchy in (C'([0,1]), || - ||, then both f, and f

are uniformly Cauchy and thus f, — f, f' — g uniformly for some |
/9 € C((0,1]). Then from Math 321, g = f" and so || f,, — fll —o.
l

9. Let D be the open unit disk and D the closed unit disk in C.

X ={f:D — D: f analytic on D and extends ctsly to D}

1s a Banach space, with the sup norm.

— Proof: X is a subspace of C(D) because a linear combination
of analytic functions is analytic and is a closed subspace because a
uniform limit of analytic functions is analytic. [J

Time out for a defn and a theorem:
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Defn: Let X be a NVS and (x,) € X. The series Y >
converges if the sequence of partial sums converges to some = € X.

The series converges absolutely if >~ | ||z,]| < oo.

Note that on R, abs. convergence implies convergence and this
is consistent with fact that R is complete. Of course, even on IR,
convergence does not imply abs. convergence.

Theorem (Theorem 5.1): A NVS is complete iff every absolutely
convergent series i1s convergent,

| ) .
Proof: “if:” C:AM£7 .C er

Sequne-w
]

¢

S M. (av. Cror T

Let z,, be a Cauchy sequence. For each j, choose NN, such that for

all m,n > Ny, ||z — 25| <277, We may assume that the sequence
N; is strictly increasing.

Let y; = zn;,; — ;. Then y; is absolutely convergent because
the series D "7, |[yy]| is nonnegative with bounded partial sums

K K
Dol <) 2 <,
j=1 j=1

K ] .
S0 Ty, — TNy = ) Y; — y for some y. This means that
im0 @ Nig = Y+ Ty, and so x,, has a convergent subsequence.
But any Cauchy sequence with a convergent subsequence is conver-

gent. ’ CMW g

“only if!”



Let x;, be absolutely convergent. Thus, for all € > 0, there exists
N such that Z _y zn]] < e Lety, = 27 , ;. Then y,, is Cauchy
because for m > n > N,

m

Hym = wall =11 Y ] < Z [l <Z [lzj]| < e

j=n+1 J=n+1

Since the space is complete, v, converges and thlS mean that Z
1s convergent.

Lj
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Lecture 5: o
10. Defn: For p > 1, LP(Q, u)- spaces:

D@ = {7 12— K5 [ [fPdy < o)
Q .
- for o-finite measure space (2, ).

Recall that f € L? is really an equivalence class mod W — a.e..

Equivalence classes mod 0. Stephen G. showed that:

1l o= f 1)

1s well deﬁned on equlvalence classes and that
L? is a Banach space:

a. IPis a well-defined vector space, in particular closed under
addition and scalar multlphcatlon proven by Stephen G

b. I is a NVS.
c. LP is complete.

Proof:

i. Positivity: Clearly, || f]], > 0 and [|0[[, = 0. If [| f||, = 0, then
|f|P = 0 a.e. andso [f| =0 ae.

ii.

A7l = ([ 17 fiPam e = 2 [ 1sdi e = i,

1il. Minkowski inequality: Stepehen C. showed f+glly < Ifll,+

g1l
So, LP is a NVS. O
¢. LP is complete and therefore a Banach space.
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Proof: (Theorem 6.6 of Folland. Uses Theorem 5.1).
Suppose that fi € LP is absolutely convergent, i.e., > 7" || fxll, =

[ B <o, |
J/ We want to show that there exists some F' € LP s.t.

HF_,ka”p — 0
1

Guess: F' = "7 fr. Must show:
1. F' € L? and in particular F'is finite a.e.
2.

1F = fill, =0

1 .
Let n .
1 1

which is a (possibly extended) real-valued measurable function.
By Minkowski,

HGan < Z ka”p <B /5

and so .for all n, p
. -

/@ﬁgﬁwk
Since GP 1 GP, by MCT, |

/b%ﬁ@/%SBfg

Thus, G € LP and in particular, G is finite a.e.

Since G is finite a.e., the series ' := > 7" fr(z) converges abso-

lutely and thus F' converges a.e. and so is finite a.e.

AL
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‘Since |F| < G, F € LP. This gives 1 above.

For 2 above:
P =3 AP < (F1+ I < (26 {1

Since >.1 fr — F ae., |F - S U felP — 0 ae. By DCT

IE =32 fully = ([ 1F = Y57 =0

[l
Examples: ## = (P(N) are special examples of LP spaces, with
counting measure on N:

P = al,ag, . Z \anlp < 00}

10. L* is a Banach space. (with essential sup norm, || f||eo, which
is well-defined on equiv. classes of functions).

[1£loo = inf{a > 0+ u(|f](a, 00)) = 0}
L2(Q, 1)) = {f + Iflleo < 00).
Facts about L*(Stephen G.):

1. ||f]|so is well-defined on equivalence classes in L*°(€2, u1)) because
|| f]|oo is insensitive to changes on sets of measure zero.

2. The inf is achieved, i.e., u(|f]7 (|| f]]oo, 20)) = 0.

3. |
1 < I lloop — a-e. and || f]loo < sup|f]
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4. For f € L™, there exists g = [ p-a.e. s.t.
[1/llo = sup |g|

namely, § == FX -1{co [lfuolll)

5. L is a vector space (check that addition and scalar multipli-
“cation are well-defined, i.e., are insensitive to changes on sets of
measure zero).

6. (L*,]] - ||oo) is an NVS: Positivity and Homogeneity are fairly
obvious and Stephen proved Minkowski for L

A+ glloo < {1 oo +lgllo0

Exercise: show that L*(€2, ) is complete, and hence Banach, by
modifying our proof that B(f2) is complete.

Note: Here, we have shown completeness of L*° by modifying the
proof of completeness of £,,. But completeness of £, is a corollary
of completeness of L™ because £, = L*°(N, 1) where p is counting
measure on N. So, we could have started by proving L>(£2, u) is Ba-
nach and then gotten completeness of £, and other sequence spaces.

Recall that any two norms on a finite-diml. space are equivalent.

Example of inequivalent norms on the same vector space:
(CL 1 Nsup)s (CH 1]+ llen) because one is not complete and the other
is complete.
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Non-compactness of unit ball:

For a subset Y of a metric space X and z € X o

d(z,Y) = ;Iellff d(z,y) z/\ J

it

Proposition d(z,Y) =0iff z € Y.

Proof: d(z,Y) =0 < thereexists y, € Y st. 4y, vz < €Y.
]

Corollary: If Y is closed and € Y, then d(z,Y") > 0.

Q: Let X be an NVS, Y a closed subspace of X. What is
I\ prepe

dmafc = sup d<$; Y>7
reX: [lafl=1
7 ////ﬂw

Proposition: de. = 1.
We will prove this next time and will use it to prove that the unit
ball in any infinite-dimensional NVS X is not compact.
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