Lecture 3:
At end of last lecture, we were in the course of proving that \((B(\Omega), ||\cdot||_{sup})\) is a Banach space.
We proved:
\[a. \ B(\Omega) \text{ is a vector space, as a subspace of } K^\Omega. \]

Now we prove:
\[b. \ ||f|| = ||f||_{sup} \text{ is a norm and } c. \text{ The norm metric is complete.} \]

Proof of b:
- Positivity: clearly \(||f|| \geq 0 \) and \(||f|| = 0 \) iff \(f = 0 \).
- Homogeneity: \(||\lambda f|| = |\lambda||f|| \),
- Subadditivity:

\[
||f + g|| = \sup\{|f(x) + g(x)| : x \in \Omega\} \leq \sup\{|f(x)| + |g(x)| : x \in \Omega\} \\
\leq \sup(||f|| + ||g||) = ||f|| + ||g||
\]

Intuitively, \(||f + g|| \) may be less than \(||f|| + ||g|| \) because of cancellations.

c. The norm metric is complete.

Time out for a general NVS fact:

Lemma: For any Cauchy sequence \(\{x_n\} \) in a NVS, the sequence \(||x_n|| \) converges in \(\mathbb{R} \) and in particular is bounded.
Proof: By reverse triangle inequality,

\[
|| ||x_n|| - ||x_m|| || \leq ||x_n - x_m||
\]

and so \(\{||x_n||\} \) is Cauchy in \(\mathbb{R} \) and thus converges in \(\mathbb{R} \). \(\Box \)

Note: convergence in \(B(\Omega) \) is the topology of uniform convergence: \(||f_n - f|| \to 0 \) iff \(f_n \) converges uniformly to \(f \). We sometimes denote the norm by \(||\cdot||_u \) instead of \(||\cdot||_{sup} \).
Proof of completeness of $B(\Omega)$: Let f_n be Cauchy in $B(\Omega)$. In particular, for each fixed $x \in \Omega$, the sequence $f_n(x)$ is Cauchy in \mathbb{R} because:

$$|f_n(x) - f_m(x)| \leq \sup_y |f_n(y) - f_m(y)| = ||f_n - f_m||$$

Since \mathbb{R} is complete, $f_n(x)$ converges to some $a_x \in \mathbb{R}$. Define $f(x) = a_x$.

Will show that 1) $f \in B(\Omega)$ and 2) $||f - f_n|| \to 0$.

Proof of 1:

$$|f(x)| = \lim_n |f_n(x)| \leq \sup_n |f_n(x)| \leq \sup_n ||f_n|| < \infty$$

by Lemma above. So, $f \in B(X)$.

Proof of 2 (uniform Cauchy + pointwise convergence implies uniform convergence)

Let $\epsilon > 0$. Let N be s.t. for all $m, n \geq N$, $||f_n - f_m|| < \epsilon$. For fixed $x \in \Omega$, choose $m = m_x \geq N$ s.t. $|f_m(x) - f(x)| < \epsilon$. Then

$$|f_n(x) - f(x)| \leq |f_n(x) - f_m(x)| + |f_m(x) - f(x)|$$

$$\leq ||f_n - f_m|| + |f_m(x) - f(x)| < 2\epsilon.$$

and so

$$||f_n - f|| = \sup_x |f_n(x) - f(x)| \leq 2\epsilon.$$

So, $||f - f_n|| \to 0.$ □

Alternative proof of 2 (without ϵ's):

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \leq \limsup_{m \to \infty} ||f_n - f_m||$$

Thus,

$$||f_n - f|| \leq \limsup_{m \to \infty} ||f_n - f_m||$$

13
Thus,
\[
\lim_{n \to \infty} \|f_n - f\| \leq \lim_{n \to \infty} \limsup_{m \to \infty} \|f_n - f_m\| = 0. \quad \square
\]

Time out for another general Banach space fact:

Proposition: A subspace of a Banach space is a Banach space iff it is closed.

Proof: Use:
- A subspace Y of a Banach space X inherits the NVS of X.
- A subset of a complete metric space is complete iff it is closed.

3. Let Ω be a metric space.

\[BC(\Omega) = \{\text{bounded continuous } f : \Omega \to K\} \]

is a Banach space with sup norm.

Proof:

a. $BC(\Omega)$ is a subspace of $B(\Omega)$: check closure of vector addition and scalar multiplication.

b. $BC(\Omega)$ is closed in $B(\Omega)$: A uniform limit of cts. functions is cts. And a uniform limit of bounded functions is bounded. So $BC(\Omega)$ is a closed and therefore a complete subspace of $B(\Omega)$. \quad \square

4. Let Ω be a compact metric space. Continuous functions, $C(\Omega)$, on Ω, forms a Banach space.

Proof: $C(\Omega) = BC(\Omega)$ since Ω is compact.

5. Let Ω be a metric space. Continuous functions that vanish at infinity:

\[C_0(\Omega) = \{f : X \to R : \text{cts, } \forall \varepsilon > 0 \exists \text{ compact } L \subset \Omega : \forall x \notin L |f(x)| < \varepsilon\} \]

is a Banach space with sup norm.
Proof:

a. check $C_0(\Omega)$ is a subspace of $BC(\Omega)$:
check closure of vector addition and scalar multiplication.

- vector addition: given $f, g \in C_0(\Omega)$, $f + g$ is cts. Given $\epsilon > 0$, let $L_{f,\epsilon}, L_{g,\epsilon}$ be the corresponding compact sets. Then $L := L_{f,\epsilon/2} \cup L_{g,\epsilon/2}$ is compact and for $x \notin L$, both $|f(x)|, |g(x)| < \epsilon$ and so $|f(x) + g(x)| < \epsilon$

- scalar multiplication: $L_{\lambda f,\epsilon} = L_{f,\epsilon/|\lambda|}$.

b. check $C_0(\Omega)$ is a closed subset of $BC(\Omega)$:

Let $f_n \in C_0(\Omega)$ s.t. f_n converges uniformly to f. Then f is cts.
Let $\epsilon > 0$. Then for some N, $||f_N - f|| < \epsilon$.

Then there is a compact set $L_{f_N,\epsilon}$ for f_N and ϵ,

i.e., $|f_N(x)| < \epsilon \ \forall x \notin L_{f_N,\epsilon}$.

Then for $x \notin L_{f_N,\epsilon}$,

$$|f(x)| \leq |f(x) - f_N(x)| + |f_N(x)| \leq ||f - f_N|| + |f_N(x)| < 2\epsilon$$

So, $f \in C_0(\Omega)$, and so $C_0(\Omega)$ is a closed subspace of $BC(\Omega)$ and thus is a Banach space. □

6. Continuous functions with compact support:

Defn: The **support** of a function f is $supp(f) = \{x \in X : f(x) \neq 0\}$.

$$C_c(\Omega) = \{f : \Omega \rightarrow R : \text{cts s.t. supp}(f) \text{ is compact}\}$$

$C_c(\Omega) \subset C_0(\Omega)$ because for any $f \in C_c(\Omega)$ and $x \notin supp(f)$, $f(x) = 0$.

And $C_c(\Omega)$ is a subspace of $C_0(\Omega)$ because $supp(f + g) \subset supp(f) \cup supp(g)$ and thus is closed subset of the union of two compact sets, and thus is compact.
Thus $C_c(\Omega)$ inherits NVS from $C_0(\Omega)$.

But if Ω is not compact, then $C_c(\Omega)$ need not be a Banach space because it need not be closed:

Example: $\Omega = \mathbb{R}$;

$$f_n(x) = \begin{cases}
 e^{-x^2} & x \in [-n, n] \\
 \text{straight line from } (n, e^{-n^2}) \text{ to } (n + 1, 0) \\
 \text{straight line from } (-n, e^{-n^2}) \text{ to } (-n - 1, 0) \\
 0 & x \not\in [-n - 1, n + 1]
\end{cases}$$

Then $f_n \in C_c(\mathbb{R})$ converges uniformly to e^{-x^2} which does not have compact support. □

In fact, $C_c(\mathbb{R})$ is dense in $C_0(\mathbb{R})$.

In a finite-dimensional space all subspaces are closed and the only subspace. But, as we have seen, in an infinite-dimensional NVS, there can be proper dense subspaces (in particular, not closed).
Lecture 4:

Recall Banach spaces: $B(\Omega, \| \cdot \|_{\text{sup}})$ and its subspaces

with Ω metric: $BC(\Omega)$, $C(\Omega)$ (with Ω compact), $C_0(\Omega)$ and the NVS $C_c(\Omega)$.

Note: Proof of completeness of $B(\Omega)$, showing that $\|f_n - f\| \to 0$ (uniform convergence), can be simplified (no ϵ’s needed).

One way or another, the idea is to show “uniform Cauchy + point-wise convergence implies uniform convergence.”

7. Let $\Omega = \mathbb{N}$ with discrete metric. All subsets are open.
 a. $B(\mathbb{N}) = \ell_\infty$ is the set of bounded sequences (x_1, x_2, \ldots).
 b. $BC(\mathbb{N}) = B(\mathbb{N}) = \ell_\infty$ because for the discrete metric, all subsets are open and so all functions on \mathbb{N} are continuous.
 c. $C_0(\mathbb{N}) = c_0$ is the set of sequences that converge to 0.

 Proof: For any $S \subset \mathbb{N}$, $\{\{s\} : x \in S\}$ is an open cover for of S that has no proper open subcover. Thus, S is compact iff it is finite.

 If $x = (a_1, a_2, \ldots) \in c_0$, then for all $\epsilon > 0$, there is a finite set $S \subset \mathbb{N}$ s.t. for $s \in \mathbb{N} \setminus S$, $|x_s| \leq \epsilon$ and thus for all $s \geq |S|$, $|x_s| \leq \epsilon$ Thus $a_n \to 0$.

 Conversely, if $a_n \to 0$, then for all $\epsilon > 0$, there exists N s.t. for all $s > N$, $|x_s| < \epsilon$ and so $x \in c_0$.

 d. $C_c(\mathbb{N})) = c_c$ is the set of sequences that are eventually 0, because the compact sets are the finite sets.

 Direct proof that c_c is not Banach: let $a_n = 1/n$ and $x = (a_1, a_2, \ldots) \in c_0$. Let $x^n = (a_1, \ldots, a_n, 0, \ldots)$. Then each $x^n \in c_c$ and $x^n \to x$. So, c_c is not closed and in fact is a proper dense subspace of c_0.

17
8. $C^1([0, 1])$: the set of all real-valued ctsly differentiable functions on $[0, 1]$ (including one-sided limits at the endpoints).

$C^1([0, 1])$ is a subspace of $C([0, 1])$ and thus inherits the sup-norm as an NVS $(C^1([0, 1]), \| \cdot \|_{\text{sup}})$.

But it is not complete because it is not closed: the uniform limit of C^1 functions need not be C^1.

Example: approximate $f(x) = |x|$ uniformly by C^1 functions.

In fact, $C^1([0, 1])$ is a dense subspace of $C([0, 1])$ (use Stone-Weierstrass).

However, \[\| f \| := \| f \|_{\text{sup}} + \| f' \|_{\text{sup}} \] is a norm that makes $C^1([0, 1])$ complete.

Proof: If f_n is Cauchy in $(C^1([0, 1]), \| \cdot \|)$, then both f_n and f'_n are uniformly Cauchy and thus $f_n \to f$, $f'_n \to g$ uniformly for some $f, g \in C([0, 1])$. Then from Math 321, $g = f'$ and so $\| f_n - f \| \to 0$. □

9. Let D be the open unit disk and \overline{D} the closed unit disk in \mathbb{C}.

\[X = \{ f : \overline{D} \to \overline{D} : f \text{ analytic on } D \text{ and extends ctsly to } \overline{D} \} \]

is a Banach space, with the sup norm.

- Proof: X is a subspace of $C(\overline{D})$ because a linear combination of analytic functions is analytic and is a closed subspace because a uniform limit of analytic functions is analytic. □

Time out for a defn and a theorem:
Defn: Let X be a NVS and $(x_n) \in X$. The series $\sum_{n=1}^{\infty} x_n$ converges if the sequence of partial sums converges to some $x \in X$. The series converges absolutely if $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Note that on \mathbb{R}, abs. convergence implies convergence and this is consistent with fact that \mathbb{R} is complete. Of course, even on \mathbb{R}, convergence does not imply abs. convergence.

Theorem (Theorem 5.1): A NVS is complete iff every absolutely convergent series is convergent.

Proof: “if.”

Let x_n be a Cauchy sequence. For each j, choose N_j such that for all $m, n \geq N_j$, $||x_m - x_n|| \leq 2^{-j}$. We may assume that the sequence N_j is strictly increasing.

Let $y_j = x_{N_j+1} - x_{N_j}$. Then y_j is absolutely convergent because the series $\sum_{j=1}^{\infty} ||y_j||$ is nonnegative with bounded partial sums

$$\sum_{j=1}^{K} ||y_j|| \leq \sum_{j=1}^{K} 2^{-j} \leq 1,$$

So $x_{N_{K+1}} - x_{N_1} = \sum_{j=1}^{K} y_j \to y$ for some y. This means that $\lim_{j \to \infty} x_{N_{j+1}} = y + x_{N_1}$, and so x_n has a convergent subsequence. But any Cauchy sequence with a convergent subsequence is convergent.

“only if.”
Let x_n be absolutely convergent. Thus, for all $\epsilon > 0$, there exists N such that $\sum_{j=N}^{\infty} ||x_n|| < \epsilon$. Let $y_n = \sum_{j=1}^{n} x_j$. Then y_n is Cauchy because for $m \geq n \geq N$,

$$||y_m - y_n|| = ||\sum_{j=n+1}^{m} x_j|| \leq \sum_{j=n+1}^{m} ||x_j|| \leq \sum_{j=N}^{\infty} ||x_j|| < \epsilon$$

Since the space is complete, y_n converges and this mean that $\sum_{j=1}^{N} x_j$ is convergent.
Lecture 5:

10. Defn: For \(p \geq 1 \), \(L^p(\Omega, \mu) \)-spaces:

\[
L^p(\Omega, \mu) = \{ f : \Omega \to K : \int_\Omega |f|^p d\mu < \infty \}
\]

for \(\sigma \)-finite measure space \((\Omega, \mu)\).

Recall that \(f \in L^p \) is really an equivalence class mod \(\mu - a.e. \).

Equivalence classes mod 0. Stephen G. showed that:

\[
||f||_p := (\int_\Omega |f|^p d\mu)^{1/p}
\]

is well defined on equivalence classes and that

\(L^p \) is a Banach space:

a. \(L^p \) is a well-defined vector space, in particular closed under addition and scalar multiplication; proven by Stephen G.

b. \(L^p \) is a NVS.

c. \(L^p \) is complete.

Proof:

i. Positivity: Clearly, \(||f||_p \geq 0 \) and \(||0||_p = 0 \). If \(||f||_p = 0 \), then \(|f|^p = 0 \) a.e. and so \(|f| = 0 \) a.e.

ii.

\[
||\lambda f||_p = (\int |\lambda f|^p d\mu)^{1/p} = |\lambda| (\int |f|^p d\mu)^{1/p} = |\lambda|||f||_p
\]

iii. Minkowski inequality: Stephehen G. showed \(||f+g||_p \leq ||f||_p + ||g||_p \).

So, \(L^p \) is a NVS. □

c. \(L^p \) is complete and therefore a Banach space.
Proof: (Theorem 6.6 of Folland. Uses Theorem 5.1).
Suppose that \(f_k \in L^p \) is absolutely convergent, i.e., \(\sum_1^\infty \|f_k\|_p = B < \infty \).
We want to show that there exists some \(F \in L^p \) s.t.
\[
\|F - \sum_1^n f_k\|_p \to 0
\]
Guess: \(F = \sum_1^\infty f_k \). Must show:
1. \(F \in L^p \) and in particular \(F \) is finite a.e.
2.
\[
\|F - \sum_1^n f_k\|_p \to 0
\]
Let
\[
G_n = \sum_1^n |f_k|, \quad G = \sum_1^\infty |f_k| = \lim_n G_n
\]
which is a (possibly extended) real-valued measurable function.
By Minkowski,
\[
\|G_n\|_p \leq \sum_1^n \|f_k\|_p \leq B
\]
and so for all \(n \),
\[
\int G_n^p \leq \int f_k^p \leq B
\]
Since \(G_n^p \uparrow G^p \), by MCT,
\[
\int G^p = \lim_n \int G_n^p \leq B
\]
Thus, \(G \in L^p \) and in particular, \(G \) is finite a.e.
Since \(G \) is finite a.e., the series \(F := \sum_1^\infty f_k(x) \) converges absolutely and thus \(F \) converges a.e. and so is finite a.e.
Since $|F| \leq G$, $F \in L^p$. This gives 1 above.

For 2 above:

$$|F - \sum_{1}^{n} f_k|^p \leq (|F| + \sum_{1}^{n} |f_k|)^p \leq (2G)^p \in L^1$$

Since $\sum_{1}^{n} f_k \to F$ a.e., $|F - \sum_{1}^{n} f_k|^p \to 0$ a.e. By DCT

$$\|F - \sum_{1}^{n} f_k\|_p = (\int |F - \sum_{1}^{n} f_k|^p)^{1/p} \to 0$$

□

Examples: $\ell^p = \ell^p(N)$ are special examples of L^p spaces, with counting measure on \mathbb{N}:

$$\ell^p = \{(a_1, a_2, \ldots) : \sum_{n} |a_n|^p < \infty\}$$

10. L^∞ is a Banach space. (with essential sup norm, $\|f\|_\infty$, which is well-defined on equiv. classes of functions).

$$\|f\|_\infty = \inf\{a \geq 0 : \mu(|f|^{-1}(a, \infty)) = 0\}$$

$$L^\infty(\Omega, \mu) = \{f : \|f\|_\infty < \infty\}.$$

Facts about L^∞ (Stephen G.):

1. $\|f\|_\infty$ is well-defined on equivalence classes in $L^\infty(\Omega, \mu)$ because $\|f\|_\infty$ is insensitive to changes on sets of measure zero.

2. The inf is achieved, i.e., $\mu(|f|^{-1}(\|f\|_\infty, \infty)) = 0$.

3. $|f| \leq \|f\|_\infty \mu - a.e.$ and $\|f\|_\infty \leq \sup |f|$
4. For $f \in L^\infty$, there exists $g = f$ μ-a.e. s.t.

$$||f||_\infty = \sup |g|$$

namely, $g := f \chi_{f^{-1}(\infty, ||f||\infty)}$

5. L^∞ is a vector space (check that addition and scalar multiplication are well-defined, i.e., are insensitive to changes on sets of measure zero).

6. $(L^\infty, || \cdot ||_\infty)$ is an NVS: Positivity and Homogeneity are fairly obvious and Stephen proved Minkowski for L^∞:

$$||f + g||_\infty \leq ||f||_\infty + ||g||_\infty$$

Exercise: show that $L^\infty(\Omega, \mu)$ is complete, and hence Banach, by modifying our proof that $B(\Omega)$ is complete.

Note: Here, we have shown completeness of L^∞ by modifying the proof of completeness of ℓ_∞. But completeness of ℓ_∞ is a corollary of completeness of L^∞ because $\ell_\infty = L^\infty(\mathbb{N}, \mu)$ where μ is counting measure on \mathbb{N}. So, we could have started by proving $L^\infty(\Omega, \mu)$ is Banach and then gotten completeness of ℓ_∞ and other sequence spaces.

Recall that any two norms on a finite-diml. space are equivalent.

Example of inequivalent norms on the same vector space: $(C^1, || \cdot ||_{\sup}), (C^1, || \cdot ||_{C^1})$ because one is not complete and the other is complete.
Non-compactness of unit ball:

For a subset Y of a metric space X and $x \in X$

$$d(x, Y) := \inf_{y \in Y} d(x, y)$$

Proposition $d(x, Y) = 0$ iff $x \in \overline{Y}$.

Proof: $d(x, Y) = 0 \iff$ there exists $y_n \in Y$ s.t. $y_n \to x \iff x \in \overline{Y}$.

□

Corollary: If Y is closed and $x \not\in Y$, then $d(x, Y) > 0$.

Q: Let X be an NVS, Y a closed subspace of X. What is

$$d_{\max} := \sup_{x \in X: ||x||=1} d(x, Y)?$$

Proposition: $d_{\max} = 1$.

We will prove this next time and will use it to prove that the unit ball in any infinite-dimensional NVS X is not compact.