Lecture 12:

Recall:

Real HB Theorem: Let W be a subspace of X, a real vector space $f: W \to \mathbb{R}$ be a linear functional. Let $f: X \to \mathbb{R}$ be a sublinear functional such that for all $x \in W$, $f(x) \leq p(x)$. Then f can be extended to a linear functional F on X s.t. $F(x) \leq p(x)$ for all $x \in X$ and $F|_{W} = f$.

Prop 1: Let X be a complex vector space.

a. Let f be a \mathbb{R} -linear functional.

Then $f_C(x) := f(x) - if(ix)$ is a \mathbb{C} -linear functional, the complexification of f.

b. Let h be a \mathbb{C} -linear functional and let $f = \Re h$.

Then f is a \mathbb{R} -linear functional and $h(x) = f_{\mathbb{C}}(x)$.

$$\mathbb{R} \qquad \mathbb{C}$$

$$f = \Re h \iff h = f_{\mathbb{C}}$$

Prop 2a: Let f be a \mathbb{R} -linear functional.

Let p(x) be a \mathbb{C} -seminorm on X. Then

$$\forall x |f(x)| \le p(x) \Leftrightarrow \forall x |f_{\mathbb{C}}(x)| \le p(x)$$

Complex Hahn-Banach Theorem: Let X be a complex vector space and p(x) a \mathbb{C} -semi-norm on X.

Let W be a complex subspace of X.

Let h be \mathbb{C} -linear-functional on W s.t, $\forall x |h(w)| \leq p(w)$.

Then there is a \mathbb{C} -linear-functional H on X s.t. $H|_{W} = h$ and $\forall x |H(x)| \leq p(x)$.

$$\begin{array}{ccc}
\mathbb{R} & \mathbb{C} \\
X & F & \to H = F_{\mathbb{C}} \\
\uparrow & & \downarrow \\
W & f = \Re h \leftarrow h
\end{array}$$

Proof of Complex HB:

Let $f = \Re h$, and so by Prop 1b, $h = f_{\mathbb{C}}$.

Then f is a \mathbb{R} -linear functional on W s.t. $\forall w \in W, \ f(w) \leq |f(w)| \leq |h(x)| \leq p(w)$.

Since p is a \mathbb{C} -semi-norm, it is a \mathbb{R} -semi-norm and hence a semi-linear functional.

By real HB, there is a \mathbb{R} -linear functional F on X s.t. $F|_W = f$ and $\forall x \in X, F(x) \leq p(x)$.

But then for all $\forall x \in X |F(x)| \leq p(x)$ (when F(x) is negative, apply $F(x) \leq p(x)$ to -x).

Let
$$H := F_{\mathbb{C}} = F(x) - iF(ix)$$
. Then,

$$H|_{W}(x) = (F(x) - iF(ix))|_{W} = f(x) - if(ix) = f_{\mathbb{C}}(x) = h(x).$$

And by Prop. 2a, since $\forall x \in X |F(x)| \leq p(x)$, we have $\forall x \in X |H(x)| \leq p(x)$. \square

Theorem ((Folland Theorem 5.8b,c)) Consequences of HB Theorem

- 1. Let $x \in X$ s.t. $x \neq 0$. There exists a BLF f on X s.t. ||f|| = 1 and f(x) = ||x||.
- 2. The BLFs separate points in X, i.e., for $x, y \in X$, there exists a BLF f on X s.t. $f(x) \neq f(y)$.

So, there are lots of BLFs.

Proof:

1: Define g on W := Kx by $g(rx) = r||x||, r \in K$.

Then for all $w \in W$, |g(w)| = ||w||.

Apply H-B with p(u) = ||u||, to get a BLF f s.t.

 $f|_W = g$ and $|f(u)| \le ||u||$ for all $u \in X$.

So, $||f|| \le 1$. But f(x) = g(x) = ||x||, and so ||f|| = 1.

2. Let $x, y \in X, x \neq y$. Let f be a BLF as in part 1 s.t. $f(x-y) = ||x-y|| \neq 0$. Then $f(x) \neq f(y)$.

Time out: Isomorphisms in different categories of math:

Isomorphism is a map that is

- 1. Bijective (or nearly bijective)
- 2. Preserves a structure
- 3. Inverse preserves structure

Sometimes, 3 is automatic.

1. Defn: A vector space isomorphism is a bijective linear map from one vector space X to another Y, with linear inverse.

Fact: A bijective linear map automatically has a linear inverse and thus is a vector space isomorphism.

Proof: Let $T: X \to Y$ be a bijective linear transformation.

Let $y_1, y_2 \in Y, a_1, a_2 \in K$ and T^{-1} be the inverse of T as a set mapping. Let

$$x = T^{-1}(a_1y_1 + a_2y_2), x_1 = T^{-1}(y_1), x_2 = T^{-1}(y_2)$$

Then

$$T(x) = a_1 y_1 + a_2 y_2 = a_1 T(x_1) + a_2 T(x_2) = T(a_1 T^{-1}(y_1) + a_2 T^{-1}(y_2))$$

the latter equality because T is linear. Since T is injective, we get

$$T^{-1}(a_1y_1 + a_2y_2) = x = (a_1T^{-1}(y_1) + a_2T^{-1}(y_2))$$

So, T^{-1} is linear. \square

2. Defn: A homeomorphism is a bijective continuous map from one metric space X (more generally, topological space) to another Y, with continuous inverse.

Fact: A bijective continuous map need not have a continuous inverse and thus need not be a homeomorphism.

Example:

$$T: [0, 2\pi) \to S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, \ T(\theta) = (\cos(\theta), \sin(\theta))$$

T is bijective because it maps onto the unit circle and $(\cos(\theta), \sin(\theta))$ uniquely determine θ in $[0, 2\pi)$. T is continuous because $\cos(\theta)$ and $\sin(\theta)$ are continuous. But T^{-1} is not continuous, since $T^{-1}(1, 0) = 0$ and for $\epsilon > 0$, $T^{-1}((\sqrt{1-\epsilon^2}, -\epsilon))$ is close to 2π .

An exception:

(Math 320) A bijective continuous map from one compact metric space to another automatically has a continuous inverse and therefore is a homeomorphism.

3. Defn: A homeomorphic isomorphism (isomorphism) is a bijective continuous linear map from one NVS to another, with a continuous inverse.

Fact: A bijective continuous linear map need not have a continuous inverse and so need not be a homeomorphism isomorphism:

Example in HW2 (4d). A Bijective BLT with whose inverse is not a BLT.

An exception:

Corollary of Open Mapping Theorem: A bijective continuous linear map from one *Banach space* to another automatically has a continuous inverse and therefore is a homeomorphic isomorphism.

4. Notion of Sameness for NVS:

Defn: An *isometric isomorphism* is a bijective norm-preserving linear map from one NVS to another that has a norm-preserving inverse.

Fact: A bijective norm-preserving linear map automatically has a norm-preserving inverse:

You effectively need to prove this in Hw2, 6a.

Note: In HW, I defined isometric isomorphism, without the norm-preserving inverse.

Isometric isomorphism:

- 1. Linear
- 2. Norm-preserving
- 3. Injective
- 4. Surjective

Note: 2 implies 3: if $\Psi(x) = 0$, then $||x|| = ||\Psi(x)|| = ||0|| = 0$ and so Ψ has trivial kernel.

Also, sometimes we refer to an isometric isomorphism onto its image, so we don't need to prove 4.

Lecture 13:

Define: The $dual\ space$ of an NVS X is defined

$$X^* = L(X, K) = \{BLFs \ f : X \mapsto K\}$$

Note that X^* is a Banach space, with the operator norm topology, even if X is not, because "Y is complete" implies that "L(X,Y) is complete."

Defn: The double dual space of an NVS X is

$$X^{**} = (X^*)^*$$

For $x \in X$, define $\hat{x} \in X^{**}$ by

$$\hat{x}(f) = f(x)$$

Prop: $\hat{x} \in X^{**}$, i.e. \hat{x} is a BLF on X^* .

Proof: \hat{x} a linear functional:

$$\hat{x}(af + bg) = (af + bg)(x) = af(x) + bg(x) = a\hat{x}(f) + b\hat{x}(g).$$

Since

$$|\hat{x}(f)| = |f(x)| \le ||f|| \, ||x|| = ||x|| \, ||f||$$

we have

$$||\hat{x}|| \le ||x||.$$

and so \hat{x} is a BLF on X^* . \square

In fact, Prop: $||\hat{x}|| = ||x||$.

Proof: Enough to find f s.t. $|\hat{x}(f)| = ||x|| ||f||$.

By Theorem above (Folland 5.8b), there exists a linear functional f on X s.t. ||f|| = 1 and f(x) = ||x||. So,

$$|\hat{x}(f)| = |f(x)| = ||x|| = ||x|| \ ||f||$$

and so $||\hat{x}|| = ||x||$. \square

Note: $||\hat{x}|| = ||\hat{x}||_{X^{**}}, ||x|| = ||x||_X.$

Defn: The *canonical embedding* is defined:

$$X \to X^{**}, x \mapsto \hat{x}$$

Theorem (Folland Theorem 5.8d): The canonical embedding $X \to X^{**}$, $x \mapsto \hat{x}$ is an isometric isomorphism onto its image Y.

X and Y are the "same,"

Proof:

Linearity: for all $f \in X^*$,

$$\widehat{ax + by}(f) = f(ax + by) = af(x) + bf(y) = a\hat{x}(f) + b\hat{y}(f) = (a\hat{x} + b\hat{y})(f)$$

Norm-preserving: as mentioned above, $||\hat{x}|| = ||x||$.

Injective: as mentioned above, 1-1 follows from norm-preserving.

Proposition: A NVS is Banach iff the image of its canonical embedding is closed in X^{**} .

Proof: X^{**} is Banach since it is the dual of X^* .

So, the image Y of the NVS X is closed iff Y is complete iff X is complete, the latter "iff" since X and Y are isometrically isomorphic and so one is complete iff the other is complete \square

Note that in any event an NVS embeds as a dense subspace of the closure \overline{Y} of the image Y of canoncial embedding, which is a Banach space. Deja vu?

Defn: An NVS is *reflexive* if the image of the canonical imbedding is X^{**} . We sometimes write this as $X = X^{**}$, having identified X with its image.

Note that a reflexive NVS is automatically a Banach space because the image of its canonical embedding is X^{**} , which is trivially closed.

Alternatively, X^{**} is Banach because it is a dual space.

Reflexive Banach spaces are rare but have lots of nice properties.

Example of a dual space:

Theorem (Folland Thm 6.15) Let 1 . $Then, <math>(L^p)^* = L^q$. More precisely, $(L^p)^*$ and L^q are isometrically isomorphic.

Corollary $(L^p)^{**} = (L^q)^* = (L^p)$, and so L^p is reflexive.

Sktech of proof of: $(L^p)^* = L^q$:

Let $g \in L^q$.

$$L_g:L^p o \mathbb{R}, L_g(f)=\int fgd\mu$$

Recall (from awhile back): L_g is a BLF (and thus $L_g \in (L^p)^*$) and $||L_g|| = ||g||_q$.

Let
$$\Psi: L^q \to (L^p)^*, g \mapsto L_g$$

Proposition: Ψ is an isometric isomorphism.

So,
$$(L^p)^* = L^q$$
,

Proof of Prop:

Linearity: $g \mapsto L_g$ is linear:

$$L_{ag_1+bg_2}(f) = \int (ag_1 + bg_2)(f)d\mu = a \int g_1 f d\mu + b \int g_2 f d\mu$$
$$= aL_{g_1}(f) + bL_{g_2}(f)$$

and so

$$L_{ag_1 + bg_2} = aL_{g_1} + bL_{g_2}$$

Norm-preserving: $||L_g|| = ||g||_q$.

Injective: as noted above, injective follows from norm-preserving.

Surjective: The hard part (Theorem 6.15) Rough idea:

Say $L^p = L^p(\Omega, \mu; \mathbb{R})$, with μ a finite (unsigned) measure.

Let $\phi \in (L^p)^*$. Find $g \in L^q$ s.t. $L_g = \phi$.

For each measurable E, $\mu(E)$ is finite and so $\chi_E \in L^p$.

Define a finite signed measure on Ω by

$$\nu(E) = \phi(\chi_E)$$

Verify that ν really is a signed measure e.g. if E_1, E_2, \ldots are measble and disjoint, then

$$\nu(\cup E_i) = \phi(\chi_{\cup E_i}) = \phi(\sum_i \chi_{E_i}) = \sum_i \phi(\chi_{E_i}) = \sum_i \nu(E_i)$$

Here, we are using linearity and continuity of ϕ .

If $\mu(E) = 0$, then $\chi_E = 0$ in L^p and so $\nu(E) = 0$.

Thus, $\nu \ll \mu$.

By Radon-Nikodym, there is a measurable function g s.t. for all measble E

$$\phi(\chi_E) =
u(E) = \int_E g d\mu$$

Extend to simple functions $f \in L^p$ to get

$$\phi(f) = \int fg d\mu$$

Extend to L^p functions via density of simple function in L^p (Prop. 6.7, proven by Stephen G. in Math 420) and continuity of ϕ .

So, for all $f \in L^p$,

$$\phi(f) = \int fg d\mu$$

We claim that $g \in L^q$...

Proof: (Folland, Theorem 6.14):