Lecture 12: |

Recall: | ' |

Real HB Theorem: Let W be a subspace of X, a real vector spe
Let f : W — R be a linear functional. Let p : X — R be asublinear
functional such that for all z € W, f(z) < p(z). Then f can be
' extended to a linear functional F on X st. F(z) < p(z) for all
ZUEX&HdFlW:f.

Prop 1. Let X be a complex vector space.

“a. Let f be a R-linear functional.

Then fo(z) == f(x) — if(iz) is a C-linear functional, the com-
plexification of f. |

b. Let h be a C-linear functional and let f = $th.
Then f is a R-linear functional and h(z) = fc(z).
R C
f=%h & h=fc
Prop 2a: Let f be a R-linear functional.
Let p(z) be a C-seminorm on X. Then

vz | f(z)] < ple) & Ve | fel@)] < p(2)
Complex Hahn-Banach Theorem: Let. X be a complex vector
‘space and p(z) a C-semi-norm on X.
Let W be a complex subspace of X.
Let h be C-linear-functional on W s.t, Vz |h(w)| < p(w).

Then there is a C-linear-functional H on X s.t.
H|w = h and Vz |H(z)| < p(x).
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R C
X F = H=IFg

T
W f=Rh « h

Proof of Complex HB:

Let f = Rh, and so by Prop 1b, h = f¢.

Then f is a R-linear functional on W s.t.
Vw e W, f(w) <|f(w)| < [h(z)] < p(w).

Since p i1s a C-semi-norm, it is a R-semi-norm and hence a semi-
linear functional..

By real HB, there is a R-linear functional F' on X s.t.
Flw=fandVz € X, F(z) < p(z).

But then for all Vo € X |F(z)| < p(x) (when F(x) is negative,
apply F'(z) < p(z) to —z).
Let H := F¢ = F(x) — iF(iz). Then,

Hlw(z) = (F(z) — iF(i))|lw = f(z) — if (ix) = fe(z) = h(@).

And by Prop. 2a, since Vz € X [F(z)l < p(x), we have Vz € X
|H(z)| < p(z). O o

Theorem ((Folla,nd Theorem 5.8b,c)) Consequences of HB Theo-
rem

1. Let x € X st. @ # 0. There exists a’BLF»f on X sit. I fll =1
and f(z) = ||x]]

2. The BLF's separate pomts in X, i.e, for z,y € X, there exists
a BLEF fon X st. f(x) # f(y).
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So, there are lots of BLFS.l

Proof:
1: Define g on W := Kz by g(rz) = r||z||, r € K. W
Then for all w € W, |g(w)| = ||w]].

Apply H-B with p(u) = ||ul, to get a BLF f s.t.
flw =g and |f(uw)] < ||u|| for all u € X
So, [If]l < 1. But f(z) = g(z) = ||=], and so || f|| = 1.

2. Let z,y € X,x # y. Let f be a BLF as in part 1 s.t.
fl@ —y) = ||z —y[| #0. Then f(z) # f(y).

Twme out: Isomorphisms in different categories of math:

Isomorphism is a map that is
1. Bijective (or nearly bijective)

2. Preserves a structure
3. Inverse preserves structure

Sometimes, 3 is automatic.

1. Defn: A wector space isomorphism is a bijective linear map
from one vector space X to another Y, with linear inverse.

Fact: A bijective linear map automatically has a linear inverse and
thus is a vector space isomorphism.

Proof: Let T : X — Y be a bijective linear transformation.

Let y1,y2 € Y,a1,a2 € K and T~ be the inverse of T' as a set
mapping. Let -

=T Y awy + agys), 1 = T ), 20 = T~ (ys)
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Then
T(z) = a1y1+asys = ayT(x1)+aT(22) = T(ar T (y1)+aaT (12))
the latter equality because T' is linear. Since T is injective, we get

T awy: + agY2) = T = (a7~ (1) + 2T (y2)

So, ! is linear. OJ

2. Defn: A homeomorphism is a bijective continuous map from
one metric space X (more generally, topological space) to another
Y, with continuous inverse.

Fact: A bijective continuous map need not have a continuous in-
verse and thus need not be a homeomorphism.

Example:

T:00,2m) = St = {(z,y) € R? : 2> +y* = 1}, T() = (cos(0),sin(8))

T is bijective because it maps onto the unit circle and (cos(8), sin(f))
uniquely determine 6 in [0,27). T is continous because cos() and
sin(f) are continuous. But 7"~ is not continuous, since 771(1,0) = 0

and for € > 0, T71((v/1 — €2, —¢)) is close to 2.

An exception:

(Math 320) A bijective continuous map from one compact metric
space to another automatically has a continuous inverse and therefore
is a homeomorphism. | | |

3. Defn: A homeomorphic isomorphism (isomorphism) is a bi-
jective continuous linear map from one NVS to another, with a con-
tinuous inverse. |
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Fact: A bijective continuous linear map need not have a continuous
inverse and so need not be a homeomorphism isomorphism:

Example in HW2 (4d). A Bijective BLT with whose inverse is not
a BLT.

An exception:

Corollary of Open Mapping Theorem: A bijective continuous lin-
ear map from one Banach space to another automatically has a
continuous inverse and therefore is a homeomorphic isomorphism.

4. Notion of Sameness for NVS:

Defn: An isometric isomorphism is a bijective norm-preserving
linear map from one NVS to another that has a norm-preserving
inverse.

Fact: A bijective norm-preserving linear map automatically has a
norm-preserving inverse:

You effect'ively need to prove this in Hw?2, 6a.

Note: In HW, I defined isometric isomorphism, without the norm-
preserving inverse.

[sometric isomorphism:

1. Linear

2. Norm-preserving

3. Injective

4. Surjective |

Note: 2 implies 3: if U(z) = 0, then ||z|| = ||[¥(z)|| = ||0]| = 0
and so W has trivial kernel. |

Also, sometimes we refer to an isometric isomorphism onto its
image, so we don’t need to prove 4.
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Lecture 13: |
Defns: The dual space of an NVS X is defined

X*=L(X,K)={BLFs f: X — K}

Note that X™* is a Banach space, with the operator norm topology,
even if X is not, because “Y" is complete” implies that “L(X,Y") is
complete.” S

Defn: The double dual space of an NVS X is
X = (X*)?
For x € X, define £ € X™** by
z(f) = f(=z)

Prop: £ € X**, ie. 2 is a BLF on X*.
Proof: £ a linear functional:

2(af +bg) = (af +bg)(z) = af (z) + by(z) = a2(f) + bi(g).

Since

NG Y

~
SN

2N =1 @) < WAzl = ] £
we have |
2] < [|=|]-

and so Z is a BLF on X*. [
In fact, Prop: ||2]] = [|z|].

Proof: Enough to find f s.t. |2(f)] = ||z|| ||f]]-

By Theorem above (Folland 5.8b), there exists a linear functional

fonXS.t. ||| =1 and f(z) = ||z||. So,
()| = [f@)] = |l = ll=I] || £]]
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and so ||| = ||e]|. O
Note: [l] = |||+, |Il| = 2l x.

Defn: The canonical embedding is defined:
X X"z

Theorem (Folland Theorem 5.8d): The canonical embedding X —
X* x> & is an isometric isomorphism onto its image Y. |

X and Y are the “same,”
Proof:
Linearity: for all f € X*,
ax + by(f) = flaz+by) = af(z)+bf(y) = ad(f)+by(f) = (az+bg)(f)
Norm—preserving:'as mentioned above, ||Z|| = ||z||.
Injective: as mentioned above, 1-1 follows from norm-preserving.

L]

Proposition: A NVS is Banach iff the image of its.canonical em-
~ bedding is closed in X**,

Proof: X** is Banach since it is the dual of X*.

So, the image Y of the NVS X is closed iff Y is complete iff X is
complete, the latter “iff” since X and Y are isometrically isomorphic
and so one is complete iff the other is complete [ |

Note that in any event an NVS embeds as a dense subspace of the

closure ? of the image Y of canoncial embedding, which is a Banach
“gpace. Deja vu? |

Defn: An NVS is reflexive if the image of the canonical imbedding |
is X**. We sometimes write this as X = X™**, having identifed X

with its image.
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Note that a reflexive NVS is automatically a Banach space because
the image of its canonical émbedding is X™**, which is trivially closed.

Alternatively, X™* is Banach because it is a dual space.

Reflexive Banach spaces are rare but have lots of nice properties.

Example of a dual space:

Theorem (Folland Thm 6.15) Let 1 < p < o0,1/p+1/q = 1.
Then, (LP)* = L. More precisely, (L?)* and L? are isometrically
- isomorphic.

Corollary (LP)™ = (L%)* = (LP), and so L? is reflexive.
Sktech of proof of: (LP)* = L%
Let g € LA,

L, LP — R, Ly( /fgd,u

Recall (from awhile back): L, is a BLF (and thus L, € (L?)*) and
[1Lg[] = g1l |
Let W : LT — (LF)*, g — L,
Proposition: W is an isometric isomorphism.
So, (LP)* = LY,

Proof of Prop:
Linearity: g — L, is linear:

Lagy 159, (f) = /(agl +bg2)(f)dp = a/glfdu + b/ngdu

- aLg1(f> + bLg2(f)

60



and so | |
Lagi+bgy = aLg, + bLy,

Norm-preserving: ||Lg|| = ||g]l,-

Injective: as noted above, injecttive follows from norm-preserving.

Surjective: The hard part (Theorem 6.15) Rough idea
Say LP = LP(Q, u; R), with p a finite (unsigned) measure.
Let ¢ € (LP)*. Find g € LY s.t. L, = ¢.

For each measurable F, p(F) is finite and so xg € LP.

Define a finite signed measure on 2 by

V(E) = ¢(xn)

Verify that v reélly is a signed measure e.g. if By, By, ... are measble
and disjoint, then

v(UE;) = ¢(xum) = () Xz, Z ¢(xm) = Z v(E

Here, we are using linearity and continuity of ¢.
If u(E) =0, then xg =0in LP and so v(F) = 0.
Thus, v << pu.

By Radon-Nikodym, there is a measurable function ¢ s.t. for all
meashle £

¢(xE) =v(E) = /E gdy

Extend to simple functions f € LP to get

~ [ todu
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Extend to L? functions via den81ty of Slmple function in L? (Prop.

6.7, proven by Stephen G. in Math 420) and continuity of b.
So, for all f € LP,
| :/mw
We claim that g € L9. .

Proof: (Folland, Theorem 6.14): |




