


Introduction*

Funotlon_ al analysis is the study of topologzcal vector spaces, i.e.,

vector spaces with a topology (metric) under which the vector space
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same space can have interesting but very dlfferent topologles. {“"‘%her’““
finite-dimensional-case,attthe Teasonable topologies-coincide.

Base field for vector space: K = R or C.

Main examples are Banach spaces (complete normed vector spaces)
and Hilbert spaces (oomplete inner product spaces). ) o, 2%

The universe of functional analysis:

]Rn C" C Hilbert spaces C Banach spaces C Topologlcal vector
. spaces {

These kinds of spaces grew out of axiomatizing the kinds of spaces
Qof functions that arose in analysis: Four;ﬂe;:jbﬂeﬁory (limits of linear

combinations of sin’s and cos’s and complex exponentials) and dif-
ferential equations (spaces of solutions of differential equations).

P

| We will study the structure of these qmmn respect to differ-
\ ent meaningful topologies, and th oontmuo 4 me ransforma,tlons

P

monic analysm probablhty, operator theory, ergodlo theory, convex
analysis and optimization, as well as to areas of physms such as quan-
tum meohamos

®

- Assume also a solid undergrad course in real analysis in met-

ric spaces (oonvergenoe continuity, open, closed, compact, Cauchy,




— linear algebra (vector spaces, linear independence, basis, dimen-

sion, linear transformatlons)

— ideally, a bit of general topology (chapter 4 of Folland; we will
introduce bits as we need them).
Textbook: Folland, Real Analysis, 2nd edition

Course Outjine:

5.1: Banach spaces, including L? spaces (6.1); norm determines a

metric. _
ne

5.2: Linear functionals on Banach spaces; Hahn-Banach theorem
and corollaries: any Banach space has lots of norm-continuous linear
functionals f : X — K. Dual space:

X* = { norm-cts linear functionals on X}

5.5: Hilbert spaces — has many properties of finite diml. spaces.
T

5.3: Open mapping theorem, closed graph theorem and uniform
boundedness principle, based on Baire Category Theorem

5.4: Topological vector spaces, weak topologies on Banach sapces
and -

Banach- Alaop;lu theorem: The unit ball is weakly compact.
(In" an infinite-dimensional normed vector space, the unit ball is
never norm-compact)

Weak convergence of Borel probability measures.

(Riesz) representation Theorems : characterization of dual spaces
of cerfain Banach spaces (three different versions (Theorems 5.25,

6.15, 7.17)).
Convexity and Krein-Milman Theorem under suitable hypothe-
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Ergodic theory stuedy of Measure-preserving transformations (MPTs)

i

Evaluation: 50% bi-weekly homework and 50% Final Exam. First
HW: due Friday, Jan. 18.
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Conventions:

— All measure spaces (X, B, i), often written as (X, p), are as-
sumed 81gmaﬁn1 e. Many will be finite. Some will be probability
measures.

— Terminology: use Vector space and Linear space interchange-
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Review of Metric Spaces
Defn: metric space (X, d) where X is a set and d is a metric

d(z,y) > 0, i.e., satisfies
e d(z,z) =0 and d(z,y) =0if z =y
* d(y,z) = d(y, )
o d(z,z) < d(z,y) +d(y, 2)

I

Metric measures dlstance.

Main example: R" or C" with Euclidean metric, d(z,y) = /> @x

On R or C, this reduces to d(z,y) = |z — y|.
Another example: Discrete metric on any set X:

o) ={ 4 270 |

0 z=y

Convergence: z, — x means d(zn,z) — 0 (“z is the limit of
x,”) ie., if for all € > 0, there exists N = N(e) s.t. if n > N, then
d(z,, ) < €.

Cauchy: x, is Cauchy if for all € > 0, there exists N s.t. if
m,n > N, then d(z,, z,) < ¢

Defn: a metric space is complete if every Cauchy sequence con-
;‘;:sl,i‘ point in X).
E;campl R™ and C™ with Euclidean metric is complete. (0, 1)

Two easy results, but very important:
Prop: Every convergent sequence is Cauchy:.




Proof: Let z, — z. Given € > 0, choose N s.t. if n > N, then
d(zn, ) < €.
if n,m > N, then .

A X, Tr) < A(Xp, ) + d(@, Tp) < 2€

O |
Prop: If a subsequence of a Cauchy sequence converges, then the
sequence converges (to the same limit).

Proof: Let z, be a Cauchy sequence and z,, a subsequence which
converges to .

Let € > 0. Choose I s.t. if 4 > I, then d(ap,, ) <.

Choose N s.t. if m,n > N, then d(z,, ) < €.

Choose 7 > I s.t. n; > N. Then for m > N,

AT, ) < d(Tpy, Tpy) + Ay, ) < 2e.

]
Notation: Open and closed balls:

Defns: For subsets of a metric space,
U is open if for all z € U, there exists ¢ > 0 s.t. Be(z) C U.
Equivalently, U is a union of open balls.

F is closed if it contains all its limit points. Equivalently, F* is
open.

C is compact if every sequence has a convergent subsequence.
Equivalently, every open cover has a finite subcover. |
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Caution: there are metric spaces in which compact sets need not

be closed and bounded.

f 1 X — Y is continuous: usual d, € definition. Equivalently,
f: X — Y is continuous iff for all open sets U in Y, f~HU) is
open.

Exercises relating completeness, closedness, compactness, continu-
ity:
1. A subset of a complete metric space is complete iff it is closed.

2. Every compact metric space is complete.

3. For a subset of a compact_metric space X, TFAE:
. e - (; K\T//’ﬁ
e S is complete D o=/
e S is closed

e S is compact.

4. Uniform limit of continuous functions is continuous.
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=T is closed under arbitrary unions

r finite intersections
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Normed Vector Spaces (NVS) and Banach spaces

Defn: A norm on a vector space X over a field K = R or C is a
function X — R, x > ||z|| that satisfies

e Positivity: ||z]|| > 0; and ||z|| =0 iff z = 0.
e Homgeneity: ||Az|| = |A|||z]]
e Subadditivity: ||z + y|| < ||z|| + ||y]]

Defn: A normed vector space (NVS) (or normed linear space) is
a vector space together with a norm, ||(X, || - ||).
The standard norms on R™ and C"are indeed norms:

e Fuclidean norm Hazl@): \/m
e Sup norm: Haz@: max; |z;|
e Manhattan norm: ||z|( = >, |zi|

It is easy to check that each is a norm. For instance, ||x||syp clearly
satisfies positivity and homogeneity. For the triangle inequality:

o+ 9l ey = me | + g4] < max(f] + )
< max({lal oy + [[9llup) = 15l oy + (19l

Any norm determines a metric: d(z,y) = ||z — y||:

o d(z,z) = ||z — || = [|0]| = 0 and d(z,y) = 0 iff ||z —y|[ =0
iff x=1y.

o d(y,z) = [ly — 2l = (|0 —yll = [ =1l -yl =

o d(z,2) = ||z — zl| < |le —yll + |ly — 2l| = d(=z, ) + d(y, 2)



So a NV can-also beconsidered as a metric space.. ‘This metric i is
called the {Q\oim metmc and the topology is called thg\o norm topology

Bo) = {y € X lly—all < &}, B@ = {y € X y—al < ¢}
Exercise: For an NV, as the notation suggests, e B, Be(z) is the
closure of B, (z) (in contrast to general metric spaces).

Of special interest with be the open unit ball, closed unit ball and
unit sphere

By = By(0), By = B1(0),81 ={z € X : [|z]| = 1},

Pictures of unit spheles in j ci W NOTINS.
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Defn: Two norms || - ||, [] - ||2 on the same vector space X are
equivalent if there exist C1,Cy > 0 s.t. forall z € X

Cillzll1 < ||zl < Collz]1

i.e., ratios of 1-norm and 2-norm are uniformly bounded above and
below.

The metrics for two equivalent norms have the same convergent
sequences, Cauchy sequences, and one is complete as a metric space

iff the other is
— because for a sequence zp,

Hxn_zmlb < Cyl|wn — T|[1 and Hxn“mml‘l (I/Cl)l‘xn T |2

Exercise: Two norms on the same vector space have the same
topologies, i.e., same collections of open sets, iff they are equivalent
as Norms« 5q 1f two norms have the same norm topologles then one
' plete/lff The other is (thls is false for metrics in general).




Exercise: on a finite-dimensional vector space any two norms are
equivalent as norms (and therefore have the same norm topology),
e.g., Manhatttan, sup and euclidean norms are all equivalent.

We will see that this is far form true on infinite-dimensional spaces,
and this is what makes functional analysis interesting.
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Examples of Banach spaces:
Defn: A Banach space is a complete NVS.
Will introduce properties of Banach spaces as needed.

1. R” and C" with any norm. Since any two norms are equivalent,
it suffices to check that the Euclidean metric is complete, which it is.

2. Let 2 be ANY set.
B(Q) = {bounded f:Q — K}
with sup norm: for f: X — K,

|| f1]sup := sup{|f(z)| : z € 2},
Then (B(£2), || - ||sup) is & Banach space.
For definiteness, use K = R.

Special case: B(N), often called /o, is the set of all bounded
sequences {ai, ag, ..., 0n, ..., }

Check: a. vector space, b. norm, c. complete
a. R = {f: Q — R} is a vector space.

To show that B(Q) is a vector space, we need only show that it is
a subspace of R, equivalently that it is closed under vector addition
and scalar multipliation:

— vector addition: addition of functions (f + g)(z) = f(z) + g(=);
if f and g are bounded, then so is f + g.

— scalar multiplication: (Af)(z) = Af(x);if f is bounded, then so
is Af.

4
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b 1111 = [1£1lsup is & norm:

- Positivity: clearly ||f|| > 0 and ||f|| = 0 iff f=0.
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