
Lecture 37:

Review since last Review:

BCT: In a complete metric space X ,

– a countable intersection of open dense sets is dense

– X cannot be written as a countable union of nowhere dense sets

Residual: contains a countable intersection of open dense sets

Meager: a countable union of nowhere dense sets

Meager and Residual sets are complementary

Hamel bases (finite linear combinations): use BCT to show that

for a Banach space a Hamel basis is either finite or uncountable

Schauder bases: uses infinite linear combinations;

– Schauder implies separable

Open Mapping Theorem: Banach to Banach, surjective BLT; then

BLT is open.

– Main corollary Banach to Banach, bijective BLT; then BLT is a

homeo.

Closed Graph Theorem: Banach to Banch; a linear transformation

has a closed graph iff it is continuous.

– Harder part (uses Open mapping theorem) is “closed implies

continuous”

Uniform Boundedness Principle: X Banach, Y NVS, Tn BLT; If

for each x {Tnx} is bounded, then {||Tn|||} is bounded.

Topological Vector Spaces: Marriage of topology and linear alge-

bra
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– vector addition and scalar multiplication are continuous

Norm Topology on NVS X :

– xn → x: ||xn − x|| → 0

– nhbhd base at x: {Br(x)}
Weak Topology:

– weakest topplogy on NVS X s.t. all BLFs are cts

– xn
w→ x: for all f ∈ X∗, f (xn)→ f (x)

– nbhd base at x: finite intersections of

Uf,x,ε = {y ∈ X : |f (y)− f (x)| < ε

– weak closure of unit sphere is closed unit ball

– subspaces are weakly closed iff norm closed

Weak* Topology:

– weakest topology on X∗ s.t. all x̂, x ∈ X are continuous

– fn
wk∗→ f : for all x ∈ X , fn(x) → f (x), equivalently for all

x ∈ X , x̂(fn)→ x̂(f ),

– nbhd base at f : finite intersections of

Ux,f,ε = {g ∈ X∗ : |g(x)− f (x)| < ε

On X∗

T wk∗ ⊂ T wk ⊂ T norm

Banach-Alouglu Theorem: unit ball in X∗ is weak* compact.

Riesz Representation Theorem for C(Ω), Ω a compact metric

space:

– C(Ω)∗ = N(Ω), collection of finite signed measures on Ω
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–

MT (Ω) ⊂M(Ω) ⊂ B(Ω)∗ ⊂ N(Ω)

where

—- B(Ω)∗ is unit ball in N(Ω)

—- M(Ω) = collection of Borel probability measures on Ω

—- MT (Ω) = collection of T -invariant Borel probability measures

µ on Ω, where T : Ω → Ω is cts and for all Borel A, µ(T−1(A)) =

µ(A).

MT (Ω) is nonempty, weak* compact, convex sitting in N(Ω) lo-

cally convex Hausdorf TVS.

An extreme point is a point in a convex set that canNOT be

written as a non-trivial convex combination of two distinct points in

the set; here, non-trivial means c = ta + (1− t)b, a 6= b, 0 < t < 1,

i.e., c ∈ int[a, b].
Let X be a vector space and A ⊂ X . The closed convex hull of A

is the intersection of all closed convex sets containing A, equivalently

the closure of the intersection of all convex sets containing A

In some sense, the closed convex hull of A is the set of all limits

of convex combinations of elements of A. So it is the set of all limits

of weighted averages of elements of A.

Krein-Milman Theorem: Let X be a locally convex Hausdorff

Topological Vector Space. Let K ⊂ X be a compact convex set.

Then K is the closed convex hul of its extreme points.

Application to: MT (Ω):

Defn: An MPT T is ergodic w.r.t. µ if for all A ∈ A whenever

T−1(A) = A, then µ(A) is 0 or 1.

Examples: Doubling map and irrational rotations.
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Ergodic Theorem: An MPT T is ergodic iff for all f ∈ L1(µ), for

µ-a.e. x ∈ Ω

lim
n→∞

(1/n)

n−1∑
i=0

f (T ix) =

∫
fdµ

“Time average = space average”

Theorem: Let T be continuous on a compact metric Ω. Then T

is ergodic w.r.t µ ∈MT (Ω) iff µ is an extreme point of MT (Ω).

So, Krein-Milman Theorem implies:

— the existence of an ergodic invariant measure in MT (Ω) for any

continuous T .

— a decomposition of invariant measures as “averages” (limits of

convex combinations) of ergodic invariant measures.

THE END
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