Lecture 37:

Review since last Review:

BCT: In a complete metric space X,
- a countable intersection of open dense sets is dense
- X cannot be written as a countable union of nowhere dense sets

Residual: contains a countable intersection of open dense sets

Meager: a countable union of nowhere dense sets

Meager and Residual sets are complementary

Hamel bases (finite linear combinations): use BCT to show that for a Banach space a Hamel basis is either finite or uncountable

Schauder bases: uses infinite linear combinations;
- Schauder implies separable

Open Mapping Theorem: Banach to Banach, surjective BLT; then BLT is open.
- Main corollary Banach to Banach, bijective BLT; then BLT is a homeo.

Closed Graph Theorem: Banach to Banach; a linear transformation has a closed graph iff it is continuous.
- Harder part (uses Open mapping theorem) is “closed implies continuous”

Uniform Boundedness Principle: X Banach, Y NVS, T_n BLT; If for each x $\{T_n x\}$ is bounded, then $\{|T_n||\}$ is bounded.

Topological Vector Spaces: Marriage of topology and linear algebra
- vector addition and scalar multiplication are continuous

Norm Topology on NVS X:
- $x_n \to x$: $\|x_n - x\| \to 0$
- nhbhd base at x: $\{B_r(x)\}$

Weak Topology:
- weakest topology on NVS X s.t. all BLFs are cts
- $x_n \to w x$: for all $f \in X^*$, $f(x_n) \to f(x)$
- nhbd base at x: finite intersections of $U_{f,x,\epsilon} = \{y \in X : |f(y) - f(x)| < \epsilon\}$

- weak closure of unit sphere is closed unit ball
- subspaces are weakly closed iff norm closed

Weak* Topology:
- weakest topology on X^* s.t. all \hat{x}, $x \in X$ are continuous
- $f_n \to wk^* f$: for all $x \in X$, $f_n(x) \to f(x)$, equivalently for all $x \in X$, $\hat{x}(f_n) \to \hat{x}(f)$,
- nhbd base at f: finite intersections of $U_{x,f,\epsilon} = \{g \in X^* : |g(x) - f(x)| < \epsilon\}$

On X^*

$\mathcal{T}_{wk^*} \subset \mathcal{T}_{wk} \subset \mathcal{T}_{norm}$

Banach-Alouglu Theorem: unit ball in X^* is weak* compact.

Riesz Representation Theorem for $C(\Omega)$, Ω a compact metric space:
- $C(\Omega)^* = N(\Omega)$, collection of finite signed measures on Ω
\[M_T(\Omega) \subset M(\Omega) \subset B(\Omega)^* \subset N(\Omega) \]

where

- \(B(\Omega)^* \) is unit ball in \(N(\Omega) \)
- \(M(\Omega) \) = collection of Borel probability measures on \(\Omega \)
- \(M_T(\Omega) \) = collection of \(T \)-invariant Borel probability measures \(\mu \) on \(\Omega \), where \(T : \Omega \to \Omega \) is cts and for all Borel \(A \), \(\mu(T^{-1}(A)) = \mu(A) \).

\(M_T(\Omega) \) is nonempty, weak* compact, convex sitting in \(N(\Omega) \) locally convex Hausdorff TVS.

An **extreme point** is a point in a convex set that cannot be written as a non-trivial convex combination of two distinct points in the set; here, non-trivial means \(c = ta + (1 - t)b, a \neq b, 0 < t < 1, \) i.e., \(c \in \text{int}[a, b] \).

Let \(X \) be a vector space and \(A \subset X \). The **closed convex hull** of \(A \) is the intersection of all closed convex sets containing \(A \), equivalently the closure of the intersection of all convex sets containing \(A \).

In some sense, the closed convex hull of \(A \) is the set of all limits of convex combinations of elements of \(A \). So it is the set of all limits of weighted averages of elements of \(A \).

Krein-Milman Theorem: Let \(X \) be a locally convex Hausdorff Topological Vector Space. Let \(K \subset X \) be a compact convex set. Then \(K \) is the closed convex hull of its extreme points.

Application to: \(M_T(\Omega) \):

Defn: An MPT \(T \) is **ergodic** w.r.t. \(\mu \) if for all \(A \in \mathcal{A} \) whenever \(T^{-1}(A) = A \), then \(\mu(A) \) is 0 or 1.

Examples: Doubling map and irrational rotations.
Ergodic Theorem: An MPT T is ergodic iff for all $f \in L^1(\mu)$, for μ-a.e. $x \in \Omega$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x) = \int f \, d\mu$$

“Time average = space average”

Theorem: Let T be continuous on a compact metric Ω. Then T is ergodic w.r.t $\mu \in M_T(\Omega)$ iff μ is an extreme point of $M_T(\Omega)$.

So, Krein-Milman Theorem implies:
— the existence of an ergodic invariant measure in $M_T(\Omega)$ for any continuous T.
— a decomposition of invariant measures as “averages” (limits of convex combinations) of ergodic invariant measures.

THE END