
Lecture 29:

Recall Props 1,2,3.

Remark: For a topological space (X, T ) and A ⊆ X , let A
T

denote the closure of A w.r.t. T .

If T1 ⊆ T2, then A
T1 ⊇ A

T2 because in a weaker topology because

there are fewer open sets and therefore fewer closed sets. Here is an

extreme example.

Recall that in the norm topology the unit sphere is closed.

Theorem: The weak closure (i.e., the closure in the weak topology)

of the unit sphere in an infinite-dimensional NVS is the closed unit

ball.

Proof: Recall that B1(0) denotes the closed unit ball and S1 de-

notes the unit sphere.

First, we claim that

B1(0) =
⋂

{f∈X∗:||f ||=1}

{x : |f (x)| ≤ 1}

Proof of Claim: If ||f || = 1, then |f (x)| ≤ ||x||. So, if ||x|| ≤ 1,

then |f (x)| ≤ 1 and so LHS ⊆ RHS.

By Hahn-Banach corollary (Theorem 5.8b), for all x 6= 0, there

exists f ∈ X∗ s.t. ||f || = 1 and |f (x)| = ||x||. So, if x 6∈ B1(0),

then ||x|| > 1, and so |f (x)| > 1 and so x 6∈ RHS. Thus LHS ⊇
RHS�

Now, the RHS is the intersection of weakly closed sets and is thus

weakly closed. Thus, B1(0) is a weakly closed set that contains S1.

Thus, it contains the weak closure of S1.

By Prop 2, it remains to show that for every x0 ∈ B1(0), every

nbhd U of x0 intersects S1. We may assume that U belongs to the
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nbhd. base (Prop 1) of x0, i.e.,

U = ∩ni=1Ufi,x0,εi =

n⋂
i=1

{x : |fi(x− x0)| < εi}

for some choice of f1, . . . fn ∈ X∗ and εi > 0.

By Prop 3, ∩ni=1ker(fi) 6= 0.

Let y 6= 0 s.t. y ∈ ∩ni=1ker(fi) and let L be the (one-dimensional)

linear span of y. Then L + x0 is contained in U and in particular

is a line which intersects the unit ball. Intuitively, such a line must

intersect S1 (and so U would intersect S1). Here, is a precise proof:

First observe that the continuous function f (λ) := ||λy + x0||
satsifies f (0) = ||x0|| ≤ 1 and limλ→∞ f (λ) =∞, the latter since

f (λ) ≥ λ||y|| − ||x0||

It follows from the internmediate value theorem that for some λ0,

f (λ0) = 1 and so λ0y + x0 ∈ U ∩ S1. Thus, by Prop 2, x0 belongs

to the weak closure of S. �
Cor: For an infinite-dimensional NVS, the weak topology is strictly

weaker than the norm topology.

Fact: In finite-dimensional case: weak topology = norm topology.

Proof: The norm topology on Rn is the Euclidean topology.

The weak topology is the product topology of n copies of R, be-

cause the coordinate projections form a basis of the BLFs.

From HW4 #7d, the Euclidean topology on Rn is the same as the

product topology of n copies of R. �

For our next result, we will need the following
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Lemma: Let W be a (norm-) closed subspace of an NVS X . Let

y ∈ X \W . Then there is an f ∈ X∗ s.t. f (y) > 0 and f |W = 0.

In other words, a BLF can separate a point, not on W , from W .

Proof: Apply Hahn-Banach Theorem.

Let U be the subspace generated by y and W , i.e.,

U = {λy + w : w ∈ W}

Define f on U by f (λy + w) = λδ where

δ = d(y,W ) > 0 since W is norm-closed

Then f is linear, f (y) > 0 and f |W = 0.

Now by HB it suffices to show that f is a BLF on U . For this

observe that if λ 6= 0, then

||λy + w|| = |λ| ||y + w/λ|| ≥ |λ|δ = |f (λy + w)|

so in fact ||f |U || ≤ 1. �

Streamlined proof (Taek): Since W is closed, X/W is a NVS. And

the equivalence class [y] 6= 0. Apply HB to get a g ∈ (X/W )∗ s.t.

g([y]) > 0. The compositoin f = g ◦ q, where q : X → X/W is the

quotient mapping, is a BLF that satisfies f (y) > 0 and f |W = 0.

Theorem; A subspace of an NVS is weakly closed iff it is norm-

closed.

Proof: next time.
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