Lecture 27:

Recall:
Defn: Let X and Y be topological spaces. A mapping f : X — Y
is closed if its graph G .= {(z,T(x)) : x € X} isclosed in X X Y.

Closed graph theorem: Let T be a linear map from a Banach
space X into a Banach space Y. Let be the graph of T'. Then T’ is

continuous iff T is close:g.
Recall: “only if:” (%‘ontinuous implies closed) was the easy part

and does not require X or Y to be Banach.

“Gf’ W(closed implies continuous): requires X and Y to be Banach.
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Uniform Bddness Principle (Banach-Steinhaus Theorem): Let
X be a Banach space and Y a NVS and A a collection of BL.T's from

X into Y. Iffor all z € X, suppey ||Tx|] < 00, then supreq [|T]] <
00

Can be proven by Open Mapping or Closed Graph Theorem.

Proof: Proof directly by BCT.
Let
E,={z e X :||Tz|| <n,VT € A}
Then
X =U,F,.

Also, since each T € A is continuous, {z € X : ||[Tz| < n}.
is closed and thus FE,, is the intersection of closed sets and thus is
closed.

Since X is complete and each E, is closed, for some n, int(E,) #
(. So for some xy € E, and r > 0, B.(zg) C E,.
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Thus, if z € B,(0), then z + zy € E,, and so for all T' € A,
| Tz]] < ||To|| + ||T(z0 + 2)|| < 2n

Thus, ||T|| < 2n/r. O

Application: Let X be a Banach space and Y a NVS. Let T;, be
a sequence of BLTs from X into Y s.t. for each z € X limy, 00 T

exists. Define
emte (0]
Then T is a BLT. _—
Proof: Since each T;, is linear, it is easy to see that 7' is linear.

In a NVS for any convergent sequence ¥, sup,, ||y»|| < co. Thus,
for each z, sup,, ||Tpz|| < co. Thus, by uniform boundedness sup,, ||T5|| <
00, say sup,, ||Tx|| < M. Thus, for each x € X,
|Tz]| = Jim [|Tz]] < limsup [[T,]] {[z]] < M]|z]]

n—00

So, T"is a BLT. I
Another application: A subset S of a NVS X is bounded if for all
f € X", supyes | f(z)] < oo.

Proof: Recall that X™* is a Banach space. Let S be the image of
S via the canonical embedding X — X**, x +— . Apply the UBP
to A = S. The assumption becomes for all f € X*,

sup [i(f)] < o0 s 3

el nw 5
The conclusion of UBP is that é’/}iyww

sup ||£[| < oo e a

zes @\{ . <

But since ||Z|| = ||z||, S is bounded. [
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Defn: A topological vector space (TVS) is a vector space, to-
gether with a topology, such that vector addition and scalar mulit-
plication are continuous, i.e., the maps

XxX%X,(m,y)rﬁx+yand KxX—= X (\z)— A\

are continuous w.r.t. the product topology on the domains.

You can consider other combinations of geometric/algebraic struc-
tures. For instance,
' Defn: A topological group is a group, together with a topology,

such that multiplication and inverses are continuous, i.e., the maps

XxX =X, (z,y)—~zyand X = X,z 2!

are continuous.

A Lie group is a topologlcal group where X is a dlfferentlable

tOp Ology . O] llemw

Prop: Any NVS is a TVS.

Proof: ax
As mentioned earlier, for NVS’s X c
product norm, ||(z,y)[| = |[=[| + [[y]], is the same as the product

topology of X x Y, and convergence (&, y,) — (x,y) is the same
as , — ¢ and y, — Y.
Continuity of vector addition:

(@ )] = [l=]] +lyl]

120 +yn = (2 + )| < |l2n = 2(| +[lyn — yl|

So, a8 x, > x and v, = Y, Tn +yYp = T+ Y.
Continuity of scalar multiplication:
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Anzn—=Az|| = [|(Anzn—Anz)+(Anz=Az)|| < [An] ||20—2|[+[An=A] ][]
< 2 Jzn — ]| + [An — Al [|]]
‘the latter for sufficiently large n.
So, as z, — = and )\, — A, AnTp — AT



