Lecture 25:

Open Mapping Theorem: Every continuous linear map (BLT) from a Banach space X onto a Banach space Y is an open mapping, i.e., the image of an open set is open.

Note that for a BLT, the inverse image of any open set is open.

Proof: based on facts:

- T commutes with dilation:  $T(\lambda x) = \lambda T(x)$  (since T is linear)
- T "semi-commutes" with translation:  $T(x+x_0) = T(x)+T(x_0)$  (since T is linear)

Outline:

Step 1: Show that  $int(\overline{T(B_1(0))}) \neq \emptyset$  ) [3,16).

Step 2: Show that  $\overline{(T(B_1(0)))}$  contains an open ball centered at 0.

Step 3: Show that  $T(B_1(0))$  contains an open ball centered at 0

Step 4: Show for all open  $U \subset X$  and  $y \in T(U)$ , there exists  $\delta > 0$  s.t.

 $B_{\delta}(y) \subset T(U).$ 

Step 1: Show that  $int(\overline{T(B_1(0))}) \neq \emptyset$ Since T is onto,

 $Y = \bigcup_{n=1}^{\infty} (T(B_n(0)))$ 

Thus since Y is a complete metric space, by BCT, for some n,  $int(\overline{(T(B_n(0)))}) \neq \emptyset$ . Then by dilation  $int(\overline{(T(B_1(0)))}) \neq \emptyset$ .

Step 2: Show that  $\overline{(T(B_1(0)))}$  contains an open ball centered at 0.

110



T(B,10)

By Step 1, for some point p and  $\gamma > 0$ ,

$$B_{\gamma}(p) \subset \overline{T(B_1(0))}$$

There exists some  $x \in B_1(0)$  s.t.  $||Tx - p|| < \gamma/2$ .

By the triangle inequality,  $B_{\gamma/2}(Tx) \subset B_{\gamma}(p) \subset \overline{T(B_1(0))}$ .

Thus,  $B_{\gamma/2}(0) \subset \overline{T(B_1(0))} - Tx = \overline{T(B_1(0) - x)} \subset \overline{T(B_2(0))}$ .

Dividing by 2, we find that

$$B_{\gamma/4}(0) \subset \overline{T(B_1(0))}$$

Step 3: Show that  $T(B_1(0))$  contains an open ball centered at 0.

Since by Step 2, for some  $\gamma > 0$ ,  $B_{\gamma}(0) \subset \overline{(T(B_1(0)))}$ , by dilation it suffices to show that

$$\overline{(T(B_1(0)))} \subset T(B_2(0)).$$

Let  $y \in \overline{(T(B_1(0)))}$ . We will show that  $y \in T(B_2(0))$ .

Let  $x_1 \in B_1(0)$  s.t.  $||y - Tx_1|| < \gamma/2$  and so by dilation

$$y - Tx_1 \in B_{\gamma/2}(0) \subset \overline{(T(B_{1/2}(0)))}$$

Let  $x_2 \in B_{1/2}(0)$  s.t.  $||y - Tx_1 - Tx_2|| < \gamma/4$  and so

$$y - Tx_1 - Tx_2 \in B_{\gamma/4}(0) \subset \overline{(T(B_{1/4}(0)))}$$

Inductively choose  $x_n \in B_{1/2^{n-1}}(0)$  s.t.  $||y - \sum_{i=1}^n Tx_i|| < \gamma/2^n$  and so

$$y - \sum_{i=1}^{n} Tx_i \in B_{\gamma/2^n}(0) \subset \overline{(T(B_{1/2^n}(0)))}$$

Since X is complete and  $\sum_{i=1}^{\infty} ||x_i|| < 2$ ,  $\sum_{i=1}^{\infty} x_i$  converges to some  $x \in B_2(0)$ . And since  $y - \sum_{i=1}^n Tx_i \to 0$  and T is continuous,

$$y = Tx \qquad \lim_{n \to \infty} \sum_{i=1}^{n} Tx_i = \xi + y$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} Tx_i = \xi + y$$

Thus,  $y \in T(B_2(0))$ .

Step 4: Show for all open  $U \subset X$  and  $y \in T(U)$ , there exists  $\delta > 0$  s.t.

$$B_{\delta}(y) \subset T(U),$$

so T(U) is open.

Since by Step 3, for some  $\gamma > 0$ ,  $B_{\gamma}(0) \subset T(B_1(0))$ , given  $\epsilon > 0$ , there exists  $\delta > 0$  s.t.

$$B_{\delta}(0) \subset T(B_{\epsilon}(0)),$$

Namely, by dilation,  $\delta := \gamma \epsilon$ .

Translate by adding Tx,

$$B_{\delta}(Tx) = Tx + B_{\delta}(0) \subset Tx + T(B_{\epsilon}(0)) = T(B_{\epsilon}(x))$$

Now, given an open U and  $y = Tx \in T(U)$ , there exists  $\epsilon > 0$  s.t.  $B_{\epsilon}(x) \subset U$  and so

$$B_{\delta}(y) = B_{\delta}(Tx) \subset T(B_{\epsilon}(x)) \subset T(U) \quad \Box$$