Lecture 24:
Recall:

Defn: A subset A of a topological space is *nowhere dense* if $\text{int}(\overline{A}) = \emptyset$, equivalently if \overline{A} contains no open set.

Corollary (of Baire Category Theorem): A complete metric space cannot be written as a countable union of nowhere dense sets.

Theorem: A Hamel basis for a Banach space must be either finite or uncountable.

Proof: By contradiction. Suppose that a Banach space X had a countably infinite Hamel basis $B := \{v_1, v_2, \ldots\}$.

Write

$$X = \bigcup X_n$$

where each $X_n := \text{span}(v_1, \ldots, v_n)$.

We will show:

a. each X_n is closed in X

b. each $\text{int}(X_n) = \emptyset$,

contradicting BCT.

a. Follows from finite dimensionality of X_n: complete and therefore closed in X.

b. Let $x \in X_n$ and $\epsilon > 0$. Then $y := x + \epsilon v_{n+1} \notin X_n$, but $y \in B_{2\epsilon\|v_{n+1}\|}(x)$ and so $B_{2\epsilon\|v_{n+1}\|}(x) \nsubseteq X_n$ and so $\text{int}(X_n) = \emptyset$ \square

Note that the NVS, c_c which is not complete, has a countable basis (the standard basis vectors, e_i which is 1 in position i and 0 elsewhere).
But the standard basis cannot be a Hamel basis for the Banach space c_0 because it can only generate sequences with finitely many non-zeros.

A more useful basis:

Defn: A *Schauder basis* for a NVS X (in particular Banach X) is a countable set $\{v_n\}$ s.t. every $x \in X$ can be *expressed uniquely* as

$$x = \sum_n a_n v_n$$

meaning $\|x - \sum_{n=1}^{N} a_n v_n\| \to 0$.

Note that because of uniqueness any Schauder basis is linearly independent.

Clearly, any linear transformation on a vector space is determined by its values on a Hamel basis.

Claim: any continuous linear transformation (BLT) on a NVS is determined by its values on a Schauder basis.

Proof: Let $x = \sum_n a_n v_n \in X$, i.e., $\|x - \sum_{n=1}^{N} a_n v_n\| \to 0$.

Then by continuity of the norm, $\|Tx - \sum_{n=1}^{N} a_n Tv_n\| \to 0$ and so $Tx = \sum_n a_n Tv_n \in X$. \square

So, from the point of view of Banach spaces, Schauder bases are much more useful than Hamel bases.

Which Banach spaces have Schauder bases?

Example: any *separable* Hilbert space has a Schauder basis.

Recall that any separable Hilbert space has a countable orthonormal basis, which we claim is a Schauder basis.

Proof: Existence:

$$x = \sum_n \langle x, u_n \rangle u_n$$
Uniqueness: If
\[x = \sum_n a_n u_n \]
then
\[\sum_n (\langle x, u_n \rangle - a_n)u_n = 0. \]

Apply inner product with \(u_m \): by continuity of inner product,
\[\langle x, u_m \rangle - a_m = \langle \sum_n (\langle x, u_n \rangle - a_n)u_n, u_m \rangle = \langle 0, u_m \rangle = 0 \]
and so each \(a_m = \langle x, u_m \rangle \).

Example: For \(1 \leq p < \infty \), \(\ell^p \) has a Schauder basis, namely the standard basis, \(\{e_n : n \in \mathbb{N}\} \)

Proof:
Existence: \(x = (x_1, x_2, \ldots) = \sum_{n=1}^{\infty} x_n e_n \) in \(\ell^p \), because
\[\|x - \sum_{n=1}^{N} x_n e_n\|_p = \|(0, \ldots, 0, x_{N+1}, x_{N+2}, \ldots)\|_p = (\sum_{n=N+1}^{\infty} |x_n|^p)^{1/p} \rightarrow 0, \]

Uniqueness: Suppose
\[x = \sum_{n=1}^{\infty} a_n e_n \]
in \(\ell^p \). Suppose for some \(m \), \(x_m \neq a_m \). then for all \(N \geq m \)
\[0 \neq |x_m - a_m| \leq (\sum_{n=1}^{N} |x_n - a_n|^p + \sum_{n=N+1}^{\infty} |x_n|^p)^{1/p} = \|x - \sum_{n=1}^{N} a_n e_n\|_p \]
But the RHS \(\rightarrow 0 \) as \(N \rightarrow \infty \), a contradiction. \(\square \)

\(\ell^p \) is separable because one can show that
\[\{q_1, q_2, \ldots, q_n, 0, 0, \ldots : q_n \in \mathbb{Q}\} \]
is a countable dense set.

In fact, separability is a necessary condition for a Banach space to have a Schauder basis.

Theorem: If a Banach space has a Schauder basis, then it is separable.

Proof: Given a Schauder basis \(\{v_1, v_2, \ldots \} \) for a Banach space \(X \) we claim that
\[
\left\{ \sum_{n=1}^{N} q_n v_n : N \in \mathbb{N}, q_n \in \mathbb{Q} \right\}
\]
is dense in \(X \). To see this, let \(x \in X \) and so for some sequence \(a_n \)
\[x = \sum_n a_n v_n.\]
Given \(\epsilon > 0 \), for some \(N \)
\[||x - \sum_{n=1}^{N} a_n v_n|| < \epsilon\]
For each \(n = 1, \ldots, N \), choose \(q_n \in \mathbb{Q} \) s.t.
\[|a_n - q_n| < \epsilon/(N||v_n||)\]
Then
\[|| \sum_{n=1}^{N} a_n v_n - \sum_{n=1}^{N} q_n v_n || \leq \sum_{n=1}^{N} |a_n - q_n| ||v_n|| < \epsilon\]
So, by triangle inequality,
\[||x - \sum_{n=1}^{N} q_n v_n|| < 2\epsilon\]
So, \(X \) is separable. \(\square \)

Example: \(\ell^\infty \) is not separable and thus does not have a Schauder basis.
Proof:

Step 1: It suffices to find an uncountable set \(A \subset \ell^\infty \) s.t. for each \(x, x' \in A \) with \(x \neq x' \), \(||x - x'|| = 1 \).

Proof: Let \(S \) be a dense set. The balls \(B_{1/2}(x), x \in A \) are disjoint. Then each of these balls would contain at least one element of \(S \) and so these elements would be distinct. But since there are uncountably many balls, there are uncountably many points in \(S \). Thus, \(S \) is uncountable and so \(\ell^\infty \) is not separable.

Step 2: Let \(A = \{(x_1, x_2, \ldots,) : x_i = 0 \text{ or } 1\} \). This is (pretty much) in 1-1 correspondence with points in the unit interval and so is uncountable. And if \(x, x' \in A \) \(x \neq x' \), then \(||x - x'|| = 1 \). \(\square \)

Q (Banach, 1930’s): Does every separable Banach space have a Schauder basis?