Lecture 23:

## Baire Category Theorem

Recall:



In a metric space, this means that  $U \cap B_{\epsilon}(x) \neq \emptyset$  for each  $x, \epsilon$ .

Prop: In any topological space the finite intersection of open dense sets is open and dense, and in particular nonempty.

Proof: It is open because the intersection of finitely many open sets is open.

Prove density by induction.

For n = 1, this is given. Assume  $U_1, \ldots, U_{n+1}$  are open and dense and  $\bigcap_{i=1}^n U_i$  is open and dense. Let W be any nonempty open set. By density  $U_{n+1} \cap W$  is nonempty and open, and so

$$\left(\bigcap_{i=1}^{n+1} U_i\right) \cap W = \left(\bigcap_{i=1}^n U_i\right) \cap \left(U_{n+1} \cap W\right) \neq \emptyset. \quad \Box$$

Baire Category Theorem: Let X be a complete metric space. Then the countable intersection of open dense sets is dense, and in particular non-empty.

Proof:

Let  $U_n$  be a sequence of open dense sets. Let W be a nonempty open set. We must show that  $\bigcap_n U_n$  intersects W. We will find a point in the intersection as the limit of an inductively defined Cauchy sequence.

 $U_1 \cap W$  is nonempty and open and so there exist  $x_1$  and  $\epsilon_1 > 0$ , such that

$$\overline{B_{\epsilon_1}(x_1)} \subset U_1 \cap W. \tag{5}$$

Now,,since  $U_2 \cap B_{\epsilon_1}(x_1)$  is nonempty and open and so we can choose  $x_2$  and  $\epsilon_2 > 0$  arbitrarily small s.t.  $\overline{B_{\epsilon_2}}(x_2) \subset U_2 \cap B_{\epsilon_1}(x_1)$ .

Thus, inductively we can find  $x_n$  and  $\epsilon_n$  such that

$$\overline{B_{\epsilon_n}(x_n)} \subset U_n \cap B_{\epsilon_{n-1}}(x_{n-1}) \tag{6}$$

Since  $\{B_{\epsilon_n}(x_n)\}$  is a nested decreasing sequence, for each N and all  $n \geq N$ ,  $x_n \in \overline{B_{\epsilon_N}}(x_N)$ . Thus, if we choose  $\epsilon_n \to 0$ , then  $x_n$  is Cauchy and thus  $x_n \to x$  for some  $x \in X$ ,

We claim that  $x \in \cap_n U_n \cap W$ .

Since  $\{\overline{B_{\epsilon_n}(x_n)}\}$  is a nested sequence of closed sets and  $x_n \to x$ , we have  $x \in \overline{B_{\epsilon_n}(x_n)}$  for all n: given any fixed N, for all  $n \geq N$ ,  $x_n \in \overline{B_{\epsilon_N}(x_N)}$  and so  $x \in \overline{B_{\epsilon_N}(x_N)}$  for all n. In particular by (6),  $x \in U_n$  for all n. And by (5),  $x \in W$ . So,  $\cap_n U_n$  is dense.  $\square$ 

Example: in a complete metric space, a countable intersection of open dense sets need not be open:

The set of irrationals.

In  $\mathbb{R}$ , the complement of a single point is open and dense. So, the set of irrational numbers is a countable intersection of complements of one point sets, namely the rationals, and so is the countable Confunt of fink get intersection of open dense sets.

But it is not open.  $\square$ 

An open dense set is a "very fat, pervasive" set. A countable intersection of open dense sets is a "fairly fat, pervasive" set.

Defn: A subset of a topological space is residual if it contains a countable intersection of open dense sets.

Example of residual set: the set of irrationals

Fact: A countable intersection of residual sets is residual.

Application of BCT: Show existentes of sonety not cfsh many properties of if each property y open theses



nonempty

Defn: A subset A of a topological space is nowhere dense if its closure has empty interior – equivalently it contains no open set.

Examples: finite sets and Cantor sets are nowhere dense.

Neither the set of rationals nor the set of irrationals is nowhere dense.

Prop: A set is open and dense iff its complement is closed and nowhere dense.

(think of a finite set or a Cantor set).

Proof:

U is open and dense  $\iff$ 

U is open and for every nonempty open W,  $U \cap W \neq \emptyset \iff$ 

 $U^c$  is closed and no open W is contained in  $U^c \iff$ 

 $U^c$  is closed and nowhere dense.  $\square$ 

Corollary (of Baire Category Theorem): A complete metric space cannot be written as a countable union of nowhere dense sets.

Proof: Suppose not. Then  $X = \bigcup_n E_n$  where the closure of  $E_n$ s empty interior.  $\longrightarrow X = U F_n$ Then  $(\overline{E_n})^c$  is open and dense. But then has empty interior.

$$\emptyset = X^c = \cap_n (\overline{E_n})^c$$

contradicting BCT.  $\square$ 

Defn: A set is *meager* if it is a countable union of nowhere dense sets.

Example of a meager set: the set of rationals is meager but not nowhere dense.

Exercise: A set is meager iff its complement is residual.

Theroem: A Hamel basis for a Banach space must be either finite or uncountable.

