Lecture 23: ## Baire Category Theorem Recall: In a metric space, this means that $U \cap B_{\epsilon}(x) \neq \emptyset$ for each x, ϵ . Prop: In any topological space the finite intersection of open dense sets is open and dense, and in particular nonempty. Proof: It is open because the intersection of finitely many open sets is open. Prove density by induction. For n = 1, this is given. Assume U_1, \ldots, U_{n+1} are open and dense and $\bigcap_{i=1}^n U_i$ is open and dense. Let W be any nonempty open set. By density $U_{n+1} \cap W$ is nonempty and open, and so $$\left(\bigcap_{i=1}^{n+1} U_i\right) \cap W = \left(\bigcap_{i=1}^n U_i\right) \cap \left(U_{n+1} \cap W\right) \neq \emptyset. \quad \Box$$ Baire Category Theorem: Let X be a complete metric space. Then the countable intersection of open dense sets is dense, and in particular non-empty. Proof: Let U_n be a sequence of open dense sets. Let W be a nonempty open set. We must show that $\bigcap_n U_n$ intersects W. We will find a point in the intersection as the limit of an inductively defined Cauchy sequence. $U_1 \cap W$ is nonempty and open and so there exist x_1 and $\epsilon_1 > 0$, such that $$\overline{B_{\epsilon_1}(x_1)} \subset U_1 \cap W. \tag{5}$$ Now,,since $U_2 \cap B_{\epsilon_1}(x_1)$ is nonempty and open and so we can choose x_2 and $\epsilon_2 > 0$ arbitrarily small s.t. $\overline{B_{\epsilon_2}}(x_2) \subset U_2 \cap B_{\epsilon_1}(x_1)$. Thus, inductively we can find x_n and ϵ_n such that $$\overline{B_{\epsilon_n}(x_n)} \subset U_n \cap B_{\epsilon_{n-1}}(x_{n-1}) \tag{6}$$ Since $\{B_{\epsilon_n}(x_n)\}$ is a nested decreasing sequence, for each N and all $n \geq N$, $x_n \in \overline{B_{\epsilon_N}}(x_N)$. Thus, if we choose $\epsilon_n \to 0$, then x_n is Cauchy and thus $x_n \to x$ for some $x \in X$, We claim that $x \in \cap_n U_n \cap W$. Since $\{\overline{B_{\epsilon_n}(x_n)}\}$ is a nested sequence of closed sets and $x_n \to x$, we have $x \in \overline{B_{\epsilon_n}(x_n)}$ for all n: given any fixed N, for all $n \geq N$, $x_n \in \overline{B_{\epsilon_N}(x_N)}$ and so $x \in \overline{B_{\epsilon_N}(x_N)}$ for all n. In particular by (6), $x \in U_n$ for all n. And by (5), $x \in W$. So, $\cap_n U_n$ is dense. \square Example: in a complete metric space, a countable intersection of open dense sets need not be open: The set of irrationals. In \mathbb{R} , the complement of a single point is open and dense. So, the set of irrational numbers is a countable intersection of complements of one point sets, namely the rationals, and so is the countable Confunt of fink get intersection of open dense sets. But it is not open. \square An open dense set is a "very fat, pervasive" set. A countable intersection of open dense sets is a "fairly fat, pervasive" set. Defn: A subset of a topological space is residual if it contains a countable intersection of open dense sets. Example of residual set: the set of irrationals Fact: A countable intersection of residual sets is residual. Application of BCT: Show existentes of sonety not cfsh many properties of if each property y open theses nonempty Defn: A subset A of a topological space is nowhere dense if its closure has empty interior – equivalently it contains no open set. Examples: finite sets and Cantor sets are nowhere dense. Neither the set of rationals nor the set of irrationals is nowhere dense. Prop: A set is open and dense iff its complement is closed and nowhere dense. (think of a finite set or a Cantor set). Proof: U is open and dense \iff U is open and for every nonempty open W, $U \cap W \neq \emptyset \iff$ U^c is closed and no open W is contained in $U^c \iff$ U^c is closed and nowhere dense. \square Corollary (of Baire Category Theorem): A complete metric space cannot be written as a countable union of nowhere dense sets. Proof: Suppose not. Then $X = \bigcup_n E_n$ where the closure of E_n s empty interior. $\longrightarrow X = U F_n$ Then $(\overline{E_n})^c$ is open and dense. But then has empty interior. $$\emptyset = X^c = \cap_n (\overline{E_n})^c$$ contradicting BCT. \square Defn: A set is *meager* if it is a countable union of nowhere dense sets. Example of a meager set: the set of rationals is meager but not nowhere dense. Exercise: A set is meager iff its complement is residual. Theroem: A Hamel basis for a Banach space must be either finite or uncountable.