Lecture 21:

Review:

Normed Vector Space (NVS)

Banach space: NVS + complete

Inner product space (IPS)

Hilbert space: IPS + complete

 $\mathrm{IPS} \subset \mathrm{NVS}$

 $\mathrm{Hilbert} \subset \mathrm{Banach}$

Homeomorphic isomorphism: Vector space isomorphism + homeomorphism (HW2#4)

Isometric isomorphism: Vector space isomorphism + norm-preserving $(\mathrm{HW}2\#6)$

Isometric isomorphism \Rightarrow Homeomorphic isomorphism

Example: c_0 and c are Homeomorphically isomorphic but not Isometrically isomorphic, (HW2#4, HW3#8).

Properties of Banach spaces:

– absolute convergence criterion for completeness (Folland, Theorem 5.1)

– a subspace of Banach space is Banach iff subspace is closed

- non-compactness of unit ball (unless finite dimensional)

Properties of Hilbert spaces:

– Distance from point to closed convex subset is achieved uniquely false for Banach, HW4 #5)

– For a closed subspace W of H, Existence of orthogonal complement W^{\perp} and orthogonal decomposition $H = W \oplus W^{\perp}$

– Orthonormal bases always exist;: 4 equivalent criteria, for an o.n. set to be an o.n. basis inclduing:

$$\overline{\operatorname{span}(\{u_\alpha\})} = H$$

 $x = \sum_{\alpha} \langle x, u_{\alpha} \rangle u_{\alpha}$

– Orthonormal basis is countable iff space is separable

Hamel basis (ordinary basis)

—- exists for any nonzero vector space

—- for a Banach space either finite or uncountable (will prove soon).

—- is there a better basis for Banach spaces?

An NVS is an IPS iff Parallelogragm Law holds.

Completion of NVS to a Banach space: HW1,2,3, problem 7,7,7.

Examples of Banach: \mathbb{R}^n , \mathbb{C}^n , $B(\Omega)$, $BC(\Omega)$, $C(\Omega)$, $C_0(\Omega)$, $C_c(\Omega)$, $C^1(\Omega) \ \ell^{\infty}$, ℓ^p , c, c_0 , L^p , L^{∞} .

Examples of NVS that are not Banach: c_c , C^1 as subspace of C([0, 1]), C([0, 1]) as subspace of $L^1([0, 1])$

Examples of Hilbert: L^2 , ℓ^2

Standard models:

—- any separable Banach space sits in (isometric isomorphism embedding) ℓ^{∞} (HW3 #2)

—- any separable Hilbert space is isomeric isomorphic to ℓ^2 .

—- Note $\ell^2 \subset \ell^\infty$

BLTs: Linear transformation from one NVS X to another NVS Y that is

– continuous iff bounded

L(X, Y): set of BLTs from X to Y

-L(X, Y) is an NVS with operator norm

– If Y is Banach (e.g., \mathbb{R}, \mathbb{C}), then L(X, Y) is Banach

BLFs: BLTs from X to K

 $X^* := L(X, K)$, the dual space

 X^* is always Banach

Characterization of X^* for various X:

$$-(L^p)^* = L^q \ (1 \le p < \infty) \ (\text{Riesz rep})$$

$$(L^2)^* = L^2$$
 (Riesz-Fischer rep)

 $-C([0,1])^*$ is space of finite signed masures on [0.1].

$$-c_0^* = \ell^1$$

If H is Hilbert so is H^* ; H is conjugate-linear isometric isomorphic to H^* .

Hahn-Banach: existence of lots of linear functionals

— a purely linear algebra statement (i.e., no topology) but assumes a sublinear functional.

— Minkowski functional (HW3, #4) used to prove hyperplane separation theorems

Double dual spaces X^{**} : dual of the dual

Canonical embedding: $X \to X^{**}$; $x \mapsto \hat{x}$ where \hat{x} is the evaluation functional.

— is always an injective isometric isomorphism.

Defn: Reflexive Banach spaces: $x \mapsto \hat{x}$ is surjective, and in particular $X^{**} = X$

– Examples of reflexive Banach spaces: L^p (1 \infty), Hilbert spaces

 $-\operatorname{BLFs}$ on reflexive Banach spaces are norm-attaining (HW2#9b)