Hw3: Due Friday

Lecture 19:

Notes from last time: argument for showing that complex exponentials form an o.n. basis:

- distinction between sup norm and ℓ^2 norm
- switching from [0, 1] to unit circle in the middle of proof.

Recall:

Defn: A metric space is separable if it has a countable dense set.

Examples:

- 1. $L^2([0,1],\mu)$, with μ Lebesgue, is separable: simple functions with complex rational coefficients and intervals with rational endpoints, are dense.
 - 2. $\ell^2(X)$ is separable iff X is countable.

Proof: Assume countable, then the standard basis vectors form a countable dense set.

Assume separable, so there is a countable dense set $D = \{f_n : n \in \mathbb{N}\}$. For each n, let $U_n = \{\alpha \in X : f_n(\alpha) \neq 0\}$. Since each f_n is square summable, each U_n is countable and so $U = \bigcup_n U_n$ is countable.

Theorem: Let H be a Hilbert space. TFAE

- 1. H is separable
- 2. H has a countable orthonormal basis
- 3. Every orthonormal basis of H is countable Proof:
- 1 implies 2: Let $\{x_n\}$ be a countable dense subset of H.

We construct from $\{x_n\}$ a countable orthonormal basis in two steps:

Step 1:

.

Iteratively delete any x_n that is in the span of the previous elements. Call the resulting sequence $\{y_n\}$. If any finite subset of $\{y_n\}$ were linearly dependent, then choose the smallest N s.t. y_1, \ldots, y_N is linearly dependent; but then y_N should have been deleted.

The set $\{y_n\}$ is linearly independent, and it has same linear span as the countable dense set and so its linear span is dense.

Step 2: construct, by Gram-Schmidt orthonormalization, from $\{y_n\}$ an orthonormal sequence $\{u_n\}$ whose linear span is the same as $\{y_n\}$ and thus dense in H and so is an orthonormal basis (by characterization 1 of orthonormal basis).

Define $u_1 = \frac{y_1}{||y_1||}$ and inductively for each N > 1,

$$z_N=y_N-\sum_{n=1}^{N-1}\langle y_N,u_n
angle u_n,\quad u_N=rac{z_N}{||z_N||}$$

2 implies 1: the set of all complex rational linear combinations of elements of an orthonormal basis $\{u_n\}$ is a countable set whose closure is the same as the linear span of $\{u_n\}$ and is therefore dense in H.

3 implies 2: obvious

2 implies 3: Let $\{x_n\}$ be a countable orthonormal basis. Let $\{y_a\}_{a\in A}$ be another orthonormal basis. Let

$$\mathcal{P}_{\mathbf{A}} \not A_{\mathbf{p}} := \{ a \in A : \langle x_n, y_a \rangle \neq 0 \}.$$

Applying Bessel's inequality to write x_n in terms of the basis $\{y_a\}_{a \in A}$, we obtain that each X_n is countable. X_1 Y_2 Y_3 Y_4 Y_5 Y_5

86

Dujenting from Colum Andrews Countred Let

If for some $a \in A$, each $\langle x_n, y_a \rangle = 0$, then by completeness of the basis $\{x_n\}$, $y_a = 0$ and thus cannot be part of an orthonormal set. It follows that each $a \in A$ must belong to some A_n . So, $A = \bigcup A_n$ and thus must be countable. \square

Riesz-Freschet representation theorem:

Let H be a Hilbert space. Then $f \in H^*$ iff there exists $y \in H$ s.t. for all $x \in H$

 $f(x) = \langle x, y \rangle \qquad \text{find} \qquad \text{for } f(x) = \langle x, y \rangle \qquad \text{for } f(x) =$

Moreover, given f, y is unique.

Proof: "If:" f(x) as defined is clearly a linear functional and it is bounded: by the C-S inequality:

$$|f(x)| = |\langle x, y \rangle| \le ||y|| \ ||x||$$

and so $||f|| \le ||y||$ (in fact, since $f(y) = ||y||^2$, we have ||f|| = ||y||).

Note: It is important that we write f(x) as above, rather than $\langle y, x \rangle$, so that f(x) is a linear functional.

"Only if:" If f = 0, then y = 0 will do.

If not, W := Ker(f) is a proper closed subpsace of H (it is closed because f is continuous). Thus, there exists $z \in W^{\perp}$ s.t. ||z|| = 1.

For given $x \in H$, let u = f(x)z - f(z)x. Then $u \in W$. So,

$$0 = \langle u, z \rangle = f(x)||z||^2 - f(z)\langle x, z \rangle = f(x) - \langle x, \overline{f(z)}z \rangle$$

Thus, $y = \overline{f(z)}z$ will do.

Uniqueness: if for all x, $\langle x,y\rangle=\langle x,y'\rangle$ and so $\langle x,y-y'\rangle=0$, then setting x=y-y', we get y-y'=0. \square

Recall that $(L^p)^* = L^q$ where p and q are conjugate exponents, meaning that there is an isometric isomorphism from L^q onto $(L^p)^*$.