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Lecture 19:
Notes from last time: argument for showing that complex expo-
nentials form an o.n. basis:

— distinction between sup norm and £2 norm

— switching from [0, 1] to unit circle in the middle of proof.
Recall:

Defn: A metric space is separable if it has a countable dense set.
Examples:

1. L?([0,1], u), with u Lebesgue, is separable: simple functions

with complex rational coefficients and intervals with rational end-
points, are dense.

2. £2(X) is separable iff X is countable.

Proof: Assume countable, then the standard basis vectors form a
countable dense set.

Assume separable, so there is a countable dense set D = {fy :
n € N}. For each n, let U, = {a € X : fo(a) # 0}. Since each
f,, is square summable, each U, is countable and so U = UpUp 1s
countable.

If X were uncountable, then there exists & € X \ U. Then for éay n

( ; =t _ﬂ;—' Contradiction to density of D.
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Theorem: Let H be a Hilbert space. TFAE

1. H is separable

2. H has a countable orthonormal basis

3. Every orthonormal basis of H is countable
Proof:

1 implies 2: Let {x,} be a countable dense subset of H.
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We construct from {z,} a countable orthonormal basis in two
steps:

Step 1:

Tteratively delete any z, that is in the span of the previous ele-
ments. Call the resulting sequence {y,}. If any finite subset of {yn}
were linearly dependent, then choose the smallest N s.t. y1,..., YN
is linearly dependent; but then yy should have been deleted.

The set {y,} is linearly independent, and it has same linear span
as the countable dense set and so its linear span is dense.

Step 2: construct, by Gram-Schmidt orthonormalization, from
{y,} an orthonormal sequence {u,} whose linear span is the same
as {y,} and thus dense in H and so is an orthonormal basis (by
characterization 1 of orthonormal basis).

Define u; = W%ﬁ and inductively for each N > 1,

N-1
Z ZN
n=1 Al

2 implies 1: the set of all complex rational linear combinations
of elements of an orthonormal basis {u,} is a countable set whose
closure is the same as the linear span of {u,} and is therefore dense
in H.

3 implies 2: obvious

2 implies 3: Let {z,} be a countable orthonormal basis. Let
{¥a}aca be another orthonormal basis. Let

. %/:——- {a € A: (zn,Ya) # 0}

Applying Bessel’s inequality to write Z, in terms of the basis {¥q ae 4,
we obtain that each Ajis countable. Ay Me - T
e Xy J ‘ A
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If for some a € A, each < Tn,y, >= 0, then by completeness of
the basis {Zn}, Yo = 0 and thus cannot be part of an orthonormal set.
[T Tollows That each a € A must belong to some A,. So, A = UA,

and thus must be countable. [
Riesz-Freschet representation theorem:

Let H be a Hilbert space. Then f € H* iff there exists y € H
st. forallz € H

@)= PRI
)= \T,Y ¥ 7"
Moreover, given f, y is unique. B KJ

Proof: “If:” f(x) as defined is clearly a linear functional and it is
bounded: by the C-S inequality:

@) = 1z, 9] < llgll lie]
and so || || < |lyl] (in fact, since f(y) = [ly][?, we have || ]| = [|yl)

Note: It is important that we write f(x) as above, rather than
(y,z), so that f(x) is a linear functional.

“Only if:” If f =0, then y = 0 will do.

If not, W := Ker(f) is a proper closed subpsace of H (it is closed
because f is continuous). Thus, there exists z € W st. ||2| = 1.

For given z € H, let u = f(z)z — f(2)z. Then u € W. 3o,

0= (u,2) = f(@)l|2]]* — f(2){z, 2) = f(z) — (=, f(2)2)

Thus, y = f(2)z will do.

Uniqueness: if for all z, {z,y) = (z,¥') and so (z,y —y') =0,
then setting z =y — ¢/, we get y —y' = 0. [

Recall that (LP)* = L7 where p and g are conjugate exponents,
meaning that there is an isometric isomorphism from L? onto (LP)*.
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