Lecture 18:

Recall:

Let H be a Hilbert space and E an orthonormal set in H, i.e., orthogonal and length = 1.

 $(C_{i})^{2}$ 1. $\frac{1}{\operatorname{span}(E)} = H$ ("closed linear span"), i.e., the linear span of E1. $\frac{1}{\operatorname{span}(E)} = H$ ("closed linear span"), i.e., the linear span of E

2. (Completeness of basis) If $\langle x, u_{\alpha} \rangle = 0$ for all α , then x = 0.

 \mathbb{R}' : 3. For each $x \in H$, $x = \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$ and this series is unconditionally convergent.

4. (Parseval's Identity; Bessel's inequality with equality) for all $x \in H, ||x||^2 = \sum_{\alpha \in A} |\langle x, u_{\alpha} \rangle|^2.$

If E satisfies any one of these equivalent conditions it is called an orthonormal basis.

Theorem: Every nonzero Hilbert space has an orthonormal basis.

Proof: Order the orthonormal subsets of H by inclusion. Every totally ordered subset has an upper bound, namely its union. By Zorn, it has a maximal element E. Let $W := \overline{\operatorname{span}(E)}$ which is closed linear subspace. closed linear subspace.

If E is not an orthonormal basis, then $W \neq H$. Then $W^{\perp} \neq \{0\}$. For any nonzero $y \in W^{\perp}$, $E \cup \{y/||y||\}$ is an orthonormal set which properly contains E. This contradicts the maximality of E, and so W = H and E is an orthonormal basis. \square

Examples of orthonormal bases:

1. $L^2([0,1])$, with Lebesgue measure:

$$E:=\{e^{2\pi i n\theta}:\ n\in\mathbb{Z}\}.$$

– Orthogonality: for $n \neq m$,

$$\begin{split} \langle e^{2\pi i n\theta}, e^{2\pi i m\theta} \rangle &= \int e^{2\pi i n\theta} e^{-2\pi i m\theta} \ d\theta \\ &= \int_0^1 (\cos 2\pi (n-m)\theta)) + i (\sin 2\pi (n-m)\theta)) d\theta \\ &= /\!\!\!/ \frac{1}{2\pi (n-m)} \sin (2\pi (n-m)\theta)|_0^1 /\!\!\!/ \frac{1}{2\pi (n-m)} \cos (2\pi (n-m)\theta)|_0^1 = 0. \end{split}$$

- Length = 1:

$$\langle e^{2\pi i n \theta}, e^{2\pi i n \theta} \rangle = \int_0^1 e^{2\pi i n \theta} e^{-2\pi i n \theta} d\theta = \int_0^1 d\theta = 1.$$

– Orthonormal Basis: For $f \in L^2$,

$$\hat{f}(n) := \langle f, e^{2\pi i n \theta} \rangle = \int_0^1 f(\theta) e^{-2\pi i n \theta} d\theta$$

Want characterization 3 of orthonormal basis:

$$f = \sum_{n} \hat{f}(n)e^{2\pi i n\theta}$$

with convergence in L^2 , i.e. $||f - \sum_{-N}^{N} \hat{f}(n)e^{2\pi i n\theta}||_2 \to 0$.

Fourier series representation of L^2 functions.

This is true:

Step 1: C([0,1]) is dense in $L^2([0,1])$ in the L^2 metric, i.e. for all $f \in L^2([0,1])$ and $\epsilon > 0$, there is a continuous function g s.t. $||f-g||_2 < \epsilon$.

Step 2: Apply complex Stone-Weirstrass Theorem (Folland, section 4.7): Let X be a compact metric space. Let \mathcal{A} be a subset of C(X) which satisfies:

- a. \mathcal{A} is an algebra, i.e., a subspace of C(X) that is closed under multiplication of functions
 - b. \mathcal{A} is closed under complex conjugation
 - c. \mathcal{A} contains the constant functions
- d. \mathcal{A} separates points, i.e., for all $x, y \in X$, $x \neq y$, there exists $f \in A$ s.t. $f(x) \neq f(y)$.

Then \mathcal{A} is dense in C(X) w.r.t. the sup norm.

Apply to:

$$\mathcal{A} := \text{complex linear span } (E)$$

, i.e., all complex linear combinations of elements of E.

Verify that A satisfies a, b, c, d:

a,b,c are straightforward; for condition d, $e^{2\pi ix}$ "almost" separates points in [0, 1];

but you can never separate the points x = 0 and x = 1; so, view the functions in E as functions on the unit circle instead of [0, 1].

Thus, $L^2([0,1]) = \overline{span(E)}$ (closure in L^2 metric): because $f \in L^2([0,1])$ is approximated by $g \in C(X)$ which is approximated by a linear combination of E, which is span(E).

This is characterization 1 of orthonormal basis, and so E is an orthonormal basis.

2. $\ell^2(X)$, with counting measure. The standard orthonormal basis: $E := \{u_{\alpha}\}_{{\alpha} \in X}$.

$$u_{\alpha}(\beta) := \left\{ \begin{array}{cc} 1 & \alpha = \beta \\ 0 & \alpha \neq \beta \end{array} \right\}$$

$$\langle u_{\alpha}, u_{\gamma} \rangle = \int u_{\alpha} \overline{u_{\gamma}} d\mu = \sum_{\beta} u_{\alpha}(\beta) u_{\gamma}(\beta)$$

$$= \left\{ \begin{array}{cc} 1 & \alpha = \gamma \\ 0 & \alpha \neq \gamma \end{array} \right\}$$

 $\overline{span(E)}$ is an orthonormal set. And it is an orthonormal basis since $\overline{span(E)} = \ell^2(X)$ in ℓ^2 because if $f \in \ell^2(X)$, then it can have only countably many nonzero terms:

$$\sum_{i=1}^{\infty} |f(\alpha_i)|^2 < \infty$$

and approximate this sum by finite linear combinations of E.

If $X = \mathbb{N}$, then E is can be viewed as the standard basis vectors: $(1,0,0,0,\ldots,),(0,1,0,0,\ldots,),\ldots$

Defn: A metric space is *separable* if it has a countable dense set. Examples:

- 1. $L^2([0,1],\mu)$, with μ Lebesgue, is separable: simple functions with complex rational coefficients and intervals with rational endpoints, are dense.
 - 2. $\ell^2(X)$ is separable iff X is countable.

Proof: Assume countable, then the standard basis vectors form a countable dense set.

Assume separable, so there is a countable dense set. The support of any element of $\ell^2(X)$ is countable since it is square summable. So, the union of supports of the countable dense set in $\ell^2(X)$ is countable. If X were uncountable, then there is an element of X whose characteristic function cannot be approximated by the countable dense set. Contradiction.