Lecture 17:

Theorem: Let M be a closed subpsace of a Hilbert space H. Then $H=M\oplus M^{\perp},$ i.e., each $x\in H$ is uniquely expressible as y+zwhere $y \in M, z \in M^{\perp}$. In fact, y, z are the unique points in M, M^{\perp} closest to x.

Prop: Let H be a Hilbert space.

- 1. For any set $E \subseteq H$, $(E^{\perp})^{\perp}$ is the smallest closed subspace that contains E.
 - 2. If M is a closed subspace, then $(M^{\perp})^{\perp} = M$.

Also, if M is a subspace then $(M^{\perp})^{\perp}$ is the closure of M.

Proof: 2 follows from 1 since M is the smallest closed subspace that contains M.

Proof of 1: Will use $A \subseteq B$ implies $A^{\perp} \supseteq B^{\perp}$.

 $(E^{\perp})^{\perp}$ is a closed subspace that contains E.

Since an arbitrary intersection of closed sets is closed and an arbitrary intersection of subspaces is a subspace, the smallest closed subspace that contains a given set is the intersection of all closed subspaces that contains the given set.

Let N be the smallest closed subspace that contains E. $N \cap (E^{\perp})^{\perp} = N$ and so

$$E\subset N\subset (E^\perp)^\perp$$

Suppose $(E^{\perp})^{\perp} \neq N$. Then there exists $x \in (E^{\perp})^{\perp} \setminus N$.

Since $N \oplus N^{\perp} = H$, we can write $x = y + z, y \in N, z \in N^{\perp}$.

Since $z \in N^{\perp}$, $\langle y, z \rangle = 0$.

Since $E \subset N$, $E^{\perp} \supset N^{\perp}$, $(E^{\perp})^{\perp} \subset (N^{\perp})^{\perp}$, and so x is orthogonal to every element of N^{\perp} , in particular, $\langle x, z \rangle = 0$.

Thus, $\langle z, z \rangle = \langle x - y, z \rangle = 0$. Thus, z = 0 and so $x = y \in N$, a contradiction. \square

Defn: A set $\{u_{\alpha}\}_{{\alpha}\in A}$ is orthonormal if:

- 1. each $||u_{\alpha}|| = 1$.
- 2. for each $\alpha \neq \beta$, $u_{\alpha} \perp u_{\beta}$.

Bessel's inequality: For an orthonormal set $\{u_{\alpha}\}_{{\alpha}\in A}$ and any $x\in$ H,

$$\sum_{\alpha \in A} |\langle x, u_{\alpha} \rangle|^2 \le ||x||^2$$

Note; A may be uncountable, but by Bessel, for each x, there are only countably many α s.t. $\langle x, u_{\alpha} \rangle \neq 0$. (depending on x)

Proof: The sum is, by defintion, the sup of all finite partial sums. So, it suffices to show that for any finite $F \subset A$,

$$\sum_{\alpha \in F} |\langle x, u_{\alpha} \rangle|^2 \le ||x||^2$$

$$||x - \sum_{\alpha \in F} \langle x, u_{\alpha} \rangle u_{\alpha}||^{2} = ||x||^{2} - 2\Re \langle x, \sum_{\alpha \in F} \langle x, u_{\alpha} \rangle u_{\alpha} \rangle$$

$$+||\sum_{\alpha \in F} \langle x, u_{\alpha} \rangle u_{\alpha}||^{2}$$

$$= ||x||^2 - 2\sum_{\alpha \in F} |\langle x, u_{\alpha} \rangle|^2 + \sum_{\alpha \in F} |\langle x, u_{\alpha} \rangle|^2$$

(by the Pythagorean Theorem)

$$= ||x||^2 - \sum_{\alpha \in F} |\langle x, u_\alpha \rangle|^2$$

Thus,

$$||x||^2 - \sum_{\alpha \in F} |\langle x, u_\alpha \rangle|^2 \ge 0.$$

TFAE: Let E be an orthonormal set in H.

- 1. $\overline{\operatorname{span}(E)} = H$ ("closed linear span")
- 2. (Completeness of basis) If $\langle x, u_{\alpha} \rangle = 0$ for all α , then x = 0.
- 3. For each $x \in H$, $x = \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$ and this series is unconditionally convergent.
- 4. (Parseval's Identity; Bessel's inequality with equality) for all $x \in H$, $||x||^2 = \sum_{\alpha \in A} |\langle x, u_\alpha \rangle|^2$.

If E satisfies any one of these equivalent conditions it is called an $orthonormal\ basis.$

Proof:

2 implies 3: Enumerate $E_i := \{\alpha : \langle x, u_{\alpha} \rangle \neq 0\}$ in any order as $\alpha_1, \alpha_2, \ldots$ By Bessel's inequality $\sum_i |\langle x, u_{\alpha_i} \rangle|^2$ converges and thus its partial sums are Cauchy. For any $m \leq n$, by Pythagorean theorem,

$$||\sum_{i=m}^{n} \langle x, u_{\alpha_i} \rangle ||^2 = \sum_{m=0}^{n} |\langle x, u_{\alpha_i} \rangle|^2$$

which approaches 0 as m, n get large. Thus, the partial sums of $\sum_{i} \langle x, u_{\alpha_{i}} \rangle u_{\alpha_{i}}$ are Cauchy and so the series converges to some y since H is complete. Then for any $\beta \in A$,

$$< y-x, u_{\beta}) = < \sum_{i} < x, u_{\alpha_{i}} > u_{\alpha_{i}} - x, u_{\beta} > = < x, u_{\beta} > - < x, u_{\beta} > = 0.$$

(for middle equality, use continuity of $\langle \cdot, \cdot \rangle$ and argue differently for $\beta \in \{\alpha_i\}$ and $\beta \notin \{\alpha_i\}$).

By 2,
$$y = x$$
.

3 implies 4: As in proof of Bessel, for any n,

$$||x||^2 - \sum_{i=1}^{n} |\langle x, u_{\alpha_i} \rangle|^2 = ||x - \sum_{i=1}^{n} \langle x, u_{\alpha_i} \rangle u_{\alpha_i}|| \to 0.$$

Thus, 4 holds.

Clearly, 4 implies 2.

So, 2,3 and 4 are all equivalent.

1 implies 2: If $\langle x, u_{\alpha} \rangle = 0$ for all α , then $\langle x, y \rangle = 0$ for all y in the linear span of the u_{α} . By continuity of the inner product, $\langle x, y \rangle = 0$ for all y in the closed linear span of the u_{α} , which, by 1, is all of H. In particular, $\langle x, x \rangle = 0$ and so x = 0.

Clearly, 3 implies 1. \square

Q: Is there a way of showing that 3 implies 4 by using fact that any re-ordering of an absolutly convergent series converges always to the same limit?

Theorem: Every Hilbert space has an orthonormal basis.

Proof: Order the orthonormal subsets of H by inclusion. Every totally ordered subset has an upper bound, namely its union. By Zorn, it has a maximal element E. Let $W := \overline{\operatorname{span}(E)}$ which is closed linear subspace.

If E is not an orthonormal basis, then $W \neq H$. Then $W^{\perp} \neq \{0\}$. For any nonzero $y \in W^{\perp}$, $E \cup \{y/||y||\}$ is an orthonormal set which properly contains E. This contradicts the maximality of E, and so W = H and E is an orthonormal basis. \square