Lecture 16:

Recall: A Banach space X is a complete NVS.

Fact: $X \to [0, \infty), x \mapsto ||x||$ is continuous.

Proof (in fact, works for NVS):

Let $x_n \to x$.

$$|||x_n|| - ||x||| \le ||x_n - x||$$

Since $||x_n - x|| \to 0$, $||x_n|| \to ||x||$. \square

Recall: A Hilbert space is a complete inner product space.

Fact: $X \times X \to K$, $(x,y) \mapsto \langle x,y \rangle$ is continuous.

Proof (in fact, works for inner product spaces): If $x_n \to x, y_n \to y$, then

Since Hilbert spaces are Banach spaces, ||x|| is continuous, and so $||y_n|| \to ||y||$ and so upper bound tends to 0 as $n, m \to \infty$. \square

Defn: For a vector space X, a convex combination of $x, y \in X$ is a point of the form tx + (1 - t)y such that $t \in [0, 1]$. A subset S of X is convex if whenever $x, y \in S$ then every convex combination of x, y is in S.

A convex combination is a weighted average.

Intuitively, a convex set is one in which for every pair of points in the set, the entire line segment between the points is contained in the set.

Example: Any subspace of a vector space is convex.

Theorem (closest point): Let K be a nonempty closed convex subset of a Hilbert space H. Let $x \in H \setminus K$. Then $\inf_{y \in K} \frac{1}{||x-y||} > 0$ is achieved uniquely.

In other words, there is a unique point in K closest to x.

HW4: This is false (both existence and uniqueness) in Banach spaces, even when K is a closed subspace.

Proof: Let $\{y_n\}$ be a sequence in K such that $||x-y_n||$ converges to $d := \inf_{y \in K} ||x-y||$.

We claim that $\{y_n\}$ is Cauchy. If so, then y_n converges to some $y \in H$, and therefore $y \in K$; since $||\cdot||$ is continuous, we have

$$||x - y|| = \lim_{n} ||x - y_n|| = d,$$

and so the inf is achieved.

Proof of Cauchy:

By parallelogram law, with $y_n - x$ and $y_m - x$ as sides,

$$2(||y_n - x||^2 + ||y_m - x||^2) = ||y_n - y_m||^2 + ||y_n + y_m - 2x||^2$$

Re-write:

$$2(||y_n - x||^2 + ||y_m - x||^2) = ||y_n - y_m||^2 + 4||(y_n + y_m)/2 - x||^2$$

Since K is convex, $(y_n+y_m)/2 \in K$ and so $||(y_n+y_m)/2-x||^2 \ge d^2$. So, for large n, m,

$$(\approx 4d^2) = ||y_n - y_m||^2 + (\ge 4d^2)$$

Thus, $||y_n - y_m||^2$ is small.

With a bit more rigor:

Re-write:

$$||y_n - y_m||^2 = 2(||y_n - x||^2 + ||y_m - x||^2) - 4||(y_n + y_m)/2 - x||^2$$

$$\leq 2(||y_n - x||^2 + ||y_m - x||^2) - 4d^2,$$

the latter inequality since $(1/2)(y_n+y_m) \in K$, owing to the convexity of K.

Given $\epsilon > 0$, for large n, m,

$$2(||y_n - x||^2 + ||y_m - x||^2) - 4d^2 \le 2(d^2 + \epsilon + d^2 + \epsilon) - 4d^2 = 4\epsilon.$$

Thus, $\{y_n\}$ is Cauchy.

Uniqueness: Suppose that $y, y' \in K$ are distinct points that achieve the inf:

$$||x - y|| = d = ||x - y'||$$

Then by parallelogram law with sides x - y and x - y',

$$4d^{2} = 2(||x - y||^{2} + ||x - y'||^{2}) = ||2x - y - y'||^{2} + ||y - y'||^{2}$$
$$= 4||x - (y + y')/2||^{2} + ||y - y'^{2}|| > 4||x - (y + y')/2||^{2},$$

and so the distance from x to the midpoint (y+y')/2 is strictly smaller than d, a contradiction. \square

Q: Counterexample for closed, but not convex set in Hilbert space? (without convexity, uniquenss is false).

Defn: Let H be a Hilbert space. For any set $E\subseteq H$, the $orthogonal\ complement$ is defined

$$E^{\perp} = \{ y \in H : \forall x \in E, x \perp y \}$$

Prop: E^{\perp} is a closed subspace of H.

Proof: By bilinearity, E^{\perp} is a subspace. It is closed because $\langle x, y \rangle$ is continuous: if $y_n \in E^{\perp}$ and $y_n \to y$ in H, then for all $x \in E$, we have $\langle x, y_n \rangle = 0$ and so

$$\langle x, y \rangle = \langle x, \lim_{n} y_n \rangle = \lim_{n} \langle x, y_n \rangle = 0. \square$$

Theorem: Let M be a closed subpsace of a Hilbert space H. Then $H = M \oplus M^{\perp}$, i.e., each $x \in H$ is uniquely expressible as y + z where $y \in M, z \in M^{\perp}$. In fact, y, z are the unique points in M, M^{\perp} closest to x.

Proof: By Theorem (closest point), there is a unique $y \in M$ closest to x (of course, if $x \in M$, then y = x). Let z = x - y.

We will show that $z \in M^{\perp}$, i.e., for all $v \in M < z, v >= 0$.

We claim for all $t \in \mathbb{R}$

$$||z|| \le ||z + tv||$$

To see this, observe that ||z|| is the distance from x to y (the unique closest point on M to x), and ||z+tv|| = ||x-y-tv|| is the distance from x to $y+tv \in M$.

Thus, $f(t) = ||z + tv||^2$ achieves a minimum at t = 0. But

$$f(t) = ||z+tv||^2 = \langle z+tv, z+tv \rangle = \langle z, z \rangle + 2t\Re \langle z, v \rangle + t^2 \langle v, v \rangle$$

which is a differentiable function on \mathbb{R} . So, t = 0 is a critical point and thus f'(0) = 0. But $f'(t) = 2\Re < z, v > +2t < v, v >$ and so $0 = f'(0) = 2\Re < z, v >$ and so $\Re < z, v >= 0$. Applying the same argument to $||z + itv||^2$, we get $\Im < z, v >= 0$.

So,
$$x = y + z, y \in M, z \in M^{\perp}$$
.

Uniqueness is easy: If x=y+z=y'+z', with $y,y'\in M$, $z,z'\in M^\perp$, then $y-y'=z'-z\in M\cap M^\perp$ and so $y-y'\perp y-y'$ and so y-y'=0 and thus also z-z'=0. \square

For any subpraces is $(M^{\perp})^{\perp} = M$? Need closed subspace and is then true.

Proof if H were finite dimensional:

$$dim(M^{\perp}) = dim(H) - dim(M)$$
 and so

$$\begin{split} \dim(M^\perp)^\perp &= \dim(H) - \dim(M^\perp) \\ &= \dim(H) - (\dim(H)) - \dim(M) = \dim(M). \end{split}$$

But clearly $(M^{\perp})^{\perp} \supset M$, and then since they have the same dimension, $(M^{\perp})^{\perp} = M$. \square

Prop: Let H be a Hilbert space.

- 1. For any set $E \subseteq H$, $(E^{\perp})^{\perp}$ is the smallest closed subspace that contains E.
 - 2. If M is a closed subspace, then $(M^{\perp})^{\perp} = M$.

Proof: 2 follows from 1 since M is the smallest closed subspace that contains M.

Proof of 1: Will use
$$A \subseteq B$$
 implies $A^{\perp} \supseteq B^{\perp}$.
 $(E^{\perp})^{\perp}$ is a closed subspace that contains E . $(E^{\perp})^{\perp} \supseteq E$

Since an arbitrary intersection of closed sets is closed and an arbitrary intersection of subspaces is a subspace, the smallest closed subspace that contains a given set is the intersection of all closed subspaces that contains the given set.

Let N be the smallest closed subspace that contains E. Then $N\cap (E^\perp)^\perp=N$ and so

$$E\subset N\subset (E^\perp)^\perp$$

Suppose
$$(E^{\perp})^{\perp} \neq N$$
. Then there exists $x \in (E^{\perp})^{\perp} \setminus N$.
Since $N \oplus N^{\perp} = H$, we can write $x = y + z, y \in N, z \in N^{\perp}$.
Since $z \in N^{\perp}$, $\langle y, z \rangle = 0$.