Lecture 14:

We often write X = Y when we mean that X and Y are isometrically isomorphic. This is the strongest notion of "sameness."

We were proving:

Theorem (Folland Thm 6.15) Let 1 . $Then, <math>(L^p)^* = L^q$. More precisely, $(L^p)^*$ and L^q are isometrically isomorphic.

Recall that

$$L_g: L^p \to \mathbb{R}, L_g(f) = \int fg d\mu$$

is a BLF, and and we were showing that the map

$$L^q \mapsto (L^p)^*, \quad g \mapsto L_g$$

is an isometric isomorphism.

We showed all but surjectivity.

For surjectivity, we showed given, $\phi \in (L^p)^*$, there exists $g \in L^1$ (a R-N derivative) s.t. $L_g = \phi$.

It remains to show $g \in L^q$...

Proof: (Folland, Theorem 6.14):

Let g_n be simple functions which *pointwise* converge to g s.t.

 $|g_n| \leq |g|$ (approximate positive and negative parts).

Since g_n are simple, $g_n \in L^q$.

Let

$$f_n = \frac{|g_n|^{q/p} \operatorname{sgn}(g)}{||g_n||_q^{q/p}}.$$

Then

$$|f_n|^p = \frac{|g_n|^q}{||g_n||_q^q}$$

Replace 9th by

gn X [x: 3to]

Egor. H

So

$$||f_n||_p^p = \int \frac{|g_n|^q}{||g_n||_q^q} = 1$$

So, $||f_n||_p = 1$. Also,

$$|f_n g_n| = \frac{|g_n|^{q/p+1}}{|g_n|_q^{q/p}} = \frac{|g_n|^q}{|g_n|_q^{q-1}}$$

And so

$$\int |f_n g_n| d\mu = \int \frac{|g_n|^q}{||g_n||_q^{q-1}} d\mu = ||g_n||_q$$

Since $g_n \to g$, by Fatou,

$$||g||_q \leq \lim\inf ||g_n||_q = \liminf\int |f_n g_n| d\mu \leq \liminf\int |f_n g| d\mu$$

$$= \liminf\int f_n g d\mu = \liminf\phi(f_n) \leq \liminf|\phi(f_n)|$$

$$\leq \liminf||\phi|| ||f_n||_p = ||\phi|| < \infty$$

So, $g \in L^q$. \square

It also turns out that $(L^1)^* = L^{\infty}$ but $(L^{\infty})^* = L^1$. Of course, L^1 isometrically embeds in its doubke dual $(L^{\infty})^*$.

Hilbert spaces

Defn: Real Inner Product space Let X be a real vector space. An inner product on X is a function $X \times X \to \mathbb{R}$, $(x, y) \mapsto \langle x, y \rangle$

Positivity $\langle x, x \rangle \ge 0$ and = 0 iff x = 0

Symmetry $\langle x, y \rangle = \langle y, x \rangle$

Bilinearity: for fixed x, $\langle x, \cdot \rangle$ and $\langle \cdot, x \rangle$ are linear.

Given symmetry, need only one bilinearity equation.

 $(X, \langle x, y \rangle)$ is called a real inner product space.

Defn: Complex Inner Product space Let X be a complex vector space. An inner product on X is a function $X \times X \to \mathbb{C}$, $(x, y) \mapsto \langle x, y \rangle$

Positivity: same as above.

Skew-Symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$

Sesqui-linearity: for fixed $x, \langle \cdot, x \rangle$ is linear and $\langle x, \cdot \rangle$ is skew-linear, i.e.,

 $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ and

 $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$ Given skew-symmetry, need only one bilinearity equation.

 $(X,\langle x,y\rangle)$ is called a complex inner product space.

Defn: Induced Norm: $||x|| = \sqrt{\langle x, x \rangle}$

Verify that the induced norm is indeed a norm:

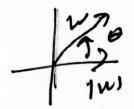
Positivity: follows from positivity of the inner product.

Homogeneity: $||ax|| = \sqrt{\langle ax, ax \rangle} = \sqrt{a\overline{a}} \langle x, x \rangle = |a|||x||$ by Sesqui-linearity of the inner product.

Triangle Inequality:

First prove Cauchy-Schwarz:

$$|\langle x, y \rangle| \le ||x|| \ ||y||$$



with equality iff x and y are linearly dependent.

Complex number fact: if $w \neq 0$, then $\alpha = \operatorname{sgn}(w) = w/|w| = e^{i\theta}$, where θ is the angle from pos. x-axis to w. So,

$$w = \alpha |w|, \quad \overline{w} = \overline{\alpha}|w| = \alpha^{-1}|w|$$

Proof of C-S for \mathbb{C} : (you have probably already seen the proof for \mathbb{R}^n).

If $\langle x, y \rangle = 0$, we are done.

So, assume $\langle x, y \rangle \neq 0$.

Let $\alpha = \operatorname{sgn}\langle x, y \rangle$. So,

$$\langle x, y \rangle = \alpha |\langle x, y \rangle|, \quad \langle y, x \rangle = \alpha^{-1} |\langle x, y \rangle|,$$

Let $z = \alpha y$.

Then

$$\langle z, x \rangle = \alpha \langle y, x \rangle = \alpha \alpha^{-1} |\langle x, y \rangle| = |\langle x, y \rangle|.$$

Similarly,

$$\langle x, z \rangle = \alpha^{-1} \langle x, y \rangle = \alpha^{-1} \alpha |\langle x, y \rangle| = |\langle x, y \rangle|.$$

For real t,

$$0 \le ||x - tz||^2 = \langle x - tz, x - tz \rangle = ||x||^2 - 2t|\langle x, y \rangle| + t^2||y||^2$$

a quadratic with minimum achieved at $t = \frac{|\langle x, y \rangle|}{||y||^2}$.

Plugging in t, we get

$$0 \le ||x-t^2||^2 = ||x||^2 - \frac{|\langle x,y\rangle|^2}{||y||^2}$$

Monty it: equality => 0= 1/x-t21/2 =>

Transposing we get

$$|\langle x,y\rangle|^2 \leq ||x||^2||y||^2$$
. X-x ty = 0

with equality iff $x - tz = x - \alpha ty = 0$, equivalently x and y linearly dependent. \Box The norm induced by an inner product satisfies triangle inequality

11211-11711 = (and thus is a norm). 1/1 1/4/1.1/4/

Proof:

Complex number fact: $w + \overline{w} = 2\Re(w)$ because

$$(x+yi) + (x-yi) = 2x.$$

By C-S inequality,

$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\Re\langle x, y\rangle \le ||x||^2 + ||y||^2 + 2|\Re\langle x, y\rangle|$$

$$\le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2 \quad \Box$$

As in \mathbb{R}^n , since $0 \leq \frac{|\langle x,y \rangle|}{||x||||y||} \leq 1$, the inner product can be interpreted as the cosine of the angle between x and y.

Defn: x and y are orthogonal, denoted $x \perp y$, if $\langle x, y \rangle = 0$.

Pythagorean Theorem holds in an inner product space: If $x_1, \ldots, x_n \in$ H are mutually orthogonal, then

$$||\sum_{1}^{n} x_{j}||^{2} = \sum_{1}^{n} ||x_{j}||^{2}$$

Proof:

$$||\sum_{1}^{n} x_{j}||^{2} = \langle \sum_{1}^{n} x_{j}, \sum_{1}^{n} x_{j} \rangle$$

$$= \sum_{1}^{n} \langle x_{j}, x_{j} \rangle + 2\Re \sum_{i < j} \langle x_{i}, x_{j} \rangle = \sum_{1}^{n} ||x_{j}||^{2}$$