Lecture 14:

We often write X =Y when we mean that X and Y are isomet-
rically isomorphic. This is the strongest notion of “sameness.”
We were proving:

Theorem (Folland Thm 6.15) Let 1 < p < oo,1/p+1/q = L.
Then, (LP)* = L9. More precisely, (LP)* and L7 are isometrically
isomorphic.

Recall that
Ly IP 3 R, Ly(f) = /fgd,u

is a BLF, and and we were showing that the map
L =% (LFY, gt Ly
is an isometric iIsomorphism.

We showed all but surjectivity.

For surjectivity, we showed given, ¢ € (LP)*, there exists g € L'
(a R-N derivative) s.t. L, = ¢.

It remains to show g € LY. .
Proof: (Folland, Theorem 6.14):

Let g, be simple functions which pointwise converge to g s.t.
lgn| < |g] (approximate positive and negative parts). L

Since g, are simple, g, € LY. jzgp
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So

g’ q
Il = [ 2 =1
nl|lq
50, 11falls = 1. Also,
g = 19l ol
ngn| — 1
gall llgnll

And so

||
[1tglan= [ 3 ”lqlu lgull,

Since g, — g, by Fatou,

||g||Om inf ||gn||, = lim mf/ | fugn|dp < lim mff | fngldu

7 '/ == I inf/fngdﬂ = liminf ¢(f,) < liminf |@(f,)|

< liminf [|@]] || fallp = ||¢]] < o0
So, g € 14, [

It also turns out that (L')* = L® but (LOO@ L. Of course, L'
isometrically embeds in its doubke dual (L>)*.
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Hilbert spaces

Defn: Real Inner Product space Let X be a real vector space.
An inner product on X is a function X x X — R, (z,y) — (z,y)

Positivity (z,z) > 0and =0 iff x = 0

Symmetry (z,y) = (y, x)

Bilinearity: for fixed z, (z,-) and (-, z) are linear.
Given symmetry, need only one bilinearity equation.
(X, (x,y)) is called a real inner product space.

Detn: Complex Inner Product space Let X be a complex vector
space. An inner product on X is a function X x X — C, (z,y) —

(z,y)

Positivity: same as above.

Skew-Symmetry: (z,y) = (y, z)

Sesqui-linearity: for fixed z, (-, x) is linear and (z, -) is skew-linear,
ie.,

(£, y+2) ={z,y) +{z;2) and

(z, \y) = Mz, y) Given skew-symmetry, need only one bilinearity

equation.
(X, (z,v)) is called a complex inner product space.
Defn: Induced Norm: ||z|| = \/{z, x)
Verity that the induced norm is indeed a norm:

Positivity: follows from positivity of the inner product.

Homogeneity: |laz|| = /< az,az> = Vaa < z,z >= |al||z]|
by Sesqui-linearity of the inner product.
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Triangle Inequality:

First prove Cauchy-Schwarz:

[z, 9)| < [l]] [ly]]

with equality iff x and y are linearly dependent.

Complex number fact: if w # 0, then o = sgn(w) = w/|w| = ¥,
where 6 is the angle from pos. x-axis to w. So,

w=alw|, W=alwl =a w

Proof of C-S for C: (you have probably already seen the proof for
R7),

If (x,y) =0, we are done.

So, assume (x,y) # 0.

Let oo = sgn(zx, y). So,

<$)y>:a|<$:y>|v <y7x> :@_1|<$=y>|a

Let z = ay.

Then

| (z,2) = aly,z) = aa”"|(z,y)| = [(z,9)|.
Similarly,

(@,2) = o z,y) = aal(z,y)| = [(z, )]

For real ¢,
0 < ||oeshi, v —t2]|* = (w—tz,2—t2) = ||2||* = 2t|(z, y)| + 2|y
a quadratic with minimum achieved at t = [!<|L|l|’g

Plugging in t, we get

(=, y)|*

y, = 2
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Transposing we get )(--{- oW =0

(2,002 < |lalPllyl2. X~o g =0

with equality@ —lz=x— aty = 0, equivalently x and y linearly
lependent. OJ = s b-«
dependen If \ o 25, ,77,)( Jfﬁn ” @-4'(

The norm induced by an inner pr()du(*‘r satisfies triangle mequahty
(and thus is a norm). _ Jx) )]7 I =

Proof: 11 1yl ol
Complex number fact: w + w = 2R(w) because
(z+yi) + (z — y1) = 2z.
By C-S inequality,
e+ ylI* = |zl + [ly]* + 2Rz, y) < |zl + |ly||* + 2|R(z, v)
< Ml + Iyl + 2llel] llyll = (el + [yl

As in R", since 0 < ﬁ,‘ﬁ# < 1, the inner product can be inter-
preted as the cosine of the angle between z and v.

Defn: z and y are orthogonal, denoted x L v, if < z,y >= 0.

Pythagorean Theorem holds in an inner product space: If z;, ..., z, €
H are mutually orthogonal, then

llejll2=Z|llel2 v,

Proof: | ¥y

X, F¥u



