
HW5, Due Friday, March 29, 11AM

1. Let X and Y be NVS. Show that the product topology of X × Y , with X and Y
given their norm topology, is the same as the topology given by the product norm:
||(x, y)|| = ||x||+ ||y||.

Proof: a set is open in the product topology iff it is a union of sets U × V where U is
open in X and V is open in Y iif it is union of set Bε(x)×Bδ(y).

Bγ((x, y)) = ∪δ≤γBδ(x)×Bγ−δ(y)

Given (x, y) and γ > 0,

(x, y) ∈ Bγ/2(x)×Bγ/2(y) ⊂ Bγ((x, y))

Given (x, y), ε, δ > 0, let γ = min(ε, δ),

(x, y) ∈ Bγ((x, y)) ⊂ Bδ(x)×Bε(y) �

2. In a topological space, the closure of a subset A is the intersection of all closed sets
that contain A. And the interior of a subset A is the union of all open sets that are
contained in A. Show the following.

(a) The closure of a set is closed, and a set is closed iff it equals its closure.

(b) The closure of A is the set of all x such that every neighbourhood of x intersects
A.

(c) The interior of a set is open, and the set is open iff it equals its interior.

(d) The interior of A is the set of all x such that there exists a neighbourhood of x
that is contained in A.

Solution:

a.

i. The closure of a set is the intersection of closed sets and thus is closed.

ii. If a set A is closed then it is the intersection of all closed sets containing A, and
thus A equals its closure. If a set equals its closure, then by virtue of i, it is closed.

b. Suppose x ∈ A. If some nbhd. U of x is disjoint from A, then U c is a closed set
containing A and therefore containing the closure of A, contradicting x ∈ A.

Suppose that every neighbourhood of x intersects A. If x 6∈ A, then A
c

is a nbhd. of
x that is disjoint from A, a contradiction. Thus, x ∈ A.

Solutions to c and d are obtained by complementing a and b, using the fact that for
any set A the interior of A is (A)c.
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3. Show that a set is a countable union of nowhere dense sets iff its complement contains
the intersection of a countable collection of dense open sets.

Proof: “Only if:” A = ∪Ei where each Ei is nowhere dense. Then Ac ⊇ ∩i(Ei)c. Each
(Ei)

c is clearly open. Since Ei is nowhere dense, Ei contains no open set and thus
every nonempty open set intersects (Ei)

c. Thus, (Ei)
c is dense.

“If” Suppose B ⊇ ∩iUi where each Ui is open and dense. Then

Bc ⊆ ∪i(Ui)c

and so
Bc = ∪i(Ui)c ∩Bc

and since (Ui)
c ∩ Bc is contained in (Ui)

c, a closed nowhere dense set, and since any
subset of a nowhere dense is nowhere dense, Bc is a countable union of nowhere dense
sets. �

4. Which of the following NVS are separable?: C([0, 1]), C1([0, 1]), C0(R), Cc(R), L∞(R, µ)
where µ is Lebesgue measure? (for each of these spaces the norm is the sup norm except
for C1([0, 1]) whose norm is ||f ||C1 = ||f ||sup + ||f ′||sup and for L∞(R, µ) whose norm is
the essential sup norm). For each that is separable, exhibit a countable dense subset
(and at least give a rough argument for why the subset is dense). For each that is not
separable, give a complete argument.

Solution: C([0, 1]), with sup norm, is separable by Stone-Weirstrass with polynomials
with rational coefficients as countable dense set.

C1([0, 1]) has norm ||f ||C1 = ||f ||sup + ||f ′||sup.

Claim: C1([0, 1]) is separable with polynomials with rational coefficients as countable
dense set.

Proof: Given f ∈ C1([0, 1]) and ε > 0, find by Stone-Weirstrass, a polynomial p(x) s.t.
||f ′ − p||sup < ε. Let P (x) =

∫ x
0
p(t)dt. Then for all x ∈ [0, 1],

|f(x)− f(0)− P (x)| = |
∫ x

0

f ′(t)dt−
∫ x

0

p(t)dt| ≤
∫ x

0

|f ′(t)− p(t)|dt ≤ ε.

Let Q(x) = f(0) + P (x). Then ||f −Q||sup ≤ ε and ||f ′ −Q′||sup = ||f ′ − p||sup ≤ ε.

Now, approximate the polynomial Q(x) with a polynomial with rational coefficients.
�

C0(R) and Cc(R), with sup norm, are separable with countable dense set ∪∞n=1Dn where
Dn is the set of all functions of the form

p(x) −n ≤ x ≤ n
q(x) −n− 1 ≤ x ≤ −n
r(x) n ≤ x ≤ n+ 1

0 |x| > n+ 1
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where p(x) is a polynomial with rational coefficients, q(x) is the function whose graph
is the line determined (−n − 1, 0) and (−n, p(−n)), r(x) is the function whose graph
is the line determined by (n, p(n)) and (n+ 1, 0).

L∞(R, µ), with sup norm, is not separable. As in the argument given in class that `∞

is not separable, it suffices to find an uncountable collection of elements of L∞(R, µ)
whose pairwise distances are all equal to 1. Such a collection is

{
∑

anχ(n,n+1) : an ∈ {0, 1}}

5. Let X, Y be Banach spaces. Show that the collection of surjective BLTs from X onto
Y is open in the space L(X, Y ) of BLTs, with the operator norm topology on L(X, Y ).

Solution:

If there is no surjective element of L(X, Y ), we are done already.

Let T be a surjective BLT from X onto Y . By the open mapping theorem, there exists
r > 0 s.t. B1(0) ⊂ T (Br(0)).

Let S ∈ L(X, Y ) such that ‖S − T‖ < 1
2r

. We claim that S is surjective.

We will show that any y ∈ Y is in the image of S. We can assume that y 6= 0 and
‖y‖ ≤ 1 by replacing y with y

‖y‖ . We constuct, by induction, an absolutely convergent

sequence xi such that ‖S(
∑N

i=0 xi)− y‖ ≤
1

2N+1 for all N .

Observe that y ∈ B1(0) ⊂ T (Br(0)), so there is some x0 ∈ Br(0) such that y = T (x0)
and

‖S(x0)− y‖ = ‖S(x0)− T (x0)‖ ≤ ‖S − T‖‖x0‖ ≤
1

2r
r =

1

2
.

From this we get that (S(x0)− y) ∈ B1/2(0), so again using B1(0) ⊂ T (Br(0)), we get
some x1 ∈ Br/2(0) such that T (x1) = (y − S(x0)). So

‖S(x0+x1)−y‖ = ‖S(x1)−(y−S(x0))‖ = ‖S(x1)−T (x1)‖ ≤ ‖S−T‖‖x1‖ ≤
1

2r

r

2
=

1

4
.

Continuing the process by induction, we get a sequence (xn) in X such that ||xn|| ≤
r/2n and ∥∥∥∥∥S(

n∑
i=0

xi)− y

∥∥∥∥∥ ≤ 1

2n+1
.

Indeed, at step n, we get xn+1 ∈ Br/2n+1(0) such that T (xn+1) = y − S(
∑n

i=0 xi). So,

‖S(
n+1∑
i=0

xi)− y‖ = ‖S(xn+1)− (y − S(
n∑
i=0

xi))‖

= ‖S(xn+1)− T (xn+1)‖ ≤ ‖S − T‖‖xn+1‖ ≤
1

2r

r

2n+1
=

1

2n+2
.

By completeness of X, absolute convergence of xn, and continuity of S,
∑∞

n=1 xn con-
verges to some x ∈ X such that S(x) = y.
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6. Let H be the space of absolutely continuous functions f : [0, 1]→ C such that f(0) =
f(1) = 0, and f ′ ∈ L2([0, 1]).

(a) Show that H is a Hilbert space with inner product

〈f, g〉 =

∫
[0,1]

f ′(x)g′(x) dx.

(b) Consider the evaluation map eva(f) = f(a). Find the unique fa ∈ H such that
for all f ∈ H we have

f(a) = eva(f) = 〈f, fa〉 .

Hint: Consider a piecwise linear function on [0, 1].

Solution:

a. It is straightforward to check that the inner product really is an inner product space.

For completeness, let fn be a Cauchy seqnence in this space. This means that f ′n is
Cauchy in L2 and since L2 is complete, f ′n converges to some g in L2. Let f(x) =∫ x
0
g(t)dt. Then f ′(x) = g(x) a.e. Clearly, f(0) = 0. We claim that f(1) = 0. To see

this, observe that by the Holder inequality,

| ||f ′||1 − ||f ′n||1 | ≤ ||f ′ − f ′n||1 ≤ ||f ′ − f ′n||2

Since each ||f ′n||1 = fn(1)− fn(0) = 0, it follows that f(1)− f(0) = ||f ′||1 = 0 and so
f(1) = 0.

Thus, f is absolutely continuous, f(1) = f(0) = 0, and f ′ ∈ L2, we have f ∈ H and
fn converges to f in H.

b. the solution is for fa to be a triangular function

fa(t) =

{
x if 0 ≤ x ≤ a
a− a

1−a(x− a) for a ≤ x ≤ 1

Then

〈f, fa〉 =

∫ a

0

f ′(t) dt− a

1− a

∫ 0

a

f ′(t) = (f(a)−f(0))− a

1− a
(f(1)−f(a)) = f(a)(1+

a

1− a
) = f(a).
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