HW5, Due Friday, March 29, 11AM

1. Let X and Y be NVS. Show that the product topology of $X \times Y$, with X and Y given their norm topology, is the same as the topology given by the product norm: $||(x, y)|| = ||x|| + ||y||$.

Proof: a set is open in the product topology iff it is a union of sets $U \times V$ where U is open in X and V is open in Y iff it is union of set $B_\gamma(x) \times B_\delta(y)$.

$B_\gamma((x, y)) = \bigcup_{\delta \leq \gamma} B_\delta(x) \times B_{\gamma-\delta}(y)$

Given (x, y) and $\gamma > 0$,

$$(x, y) \in B_{\gamma/2}(x) \times B_{\gamma/2}(y) \subset B_\gamma((x, y))$$

Given (x, y), $\epsilon, \delta > 0$, let $\gamma = \min(\epsilon, \delta)$,

$$(x, y) \in B_\gamma((x, y)) \subset B_\delta(x) \times B_\epsilon(y) \quad \Box$$

2. In a topological space, the closure of a subset A is the intersection of all closed sets that contain A. And the interior of a subset A is the union of all open sets that are contained in A. Show the following.

(a) The closure of a set is closed, and a set is closed iff it equals its closure.

(b) The closure of A is the set of all x such that every neighbourhood of x intersects A.

(c) The interior of a set is open, and the set is open iff it equals its interior.

(d) The interior of A is the set of all x such that there exists a neighbourhood of x that is contained in A.

Solution:

a.

i. The closure of a set is the intersection of closed sets and thus is closed.

ii. If a set A is closed then it is the intersection of all closed sets containing A, and thus A equals its closure. If a set equals its closure, then by virtue of i, it is closed.

b. Suppose $x \in \overline{A}$. If some nbhd. U of x is disjoint from A, then U^c is a closed set containing A and therefore containing the closure of A, contradicting $x \in \overline{A}$.

Suppose that every neighbourhood of x intersects A. If $x \notin \overline{A}$, then \overline{A}^c is a nbhd. of x that is disjoint from A, a contradiction. Thus, $x \in \overline{A}$.

Solutions to c and d are obtained by complementing a and b, using the fact that for any set A the interior of A is $(\overline{A})^c$.
3. Show that a set is a countable union of nowhere dense sets iff its complement contains the intersection of a countable collection of dense open sets.

Proof: “Only if:” $A = \bigcup E_i$ where each E_i is nowhere dense. Then $A^c \supseteq \bigcap_i (E_i)^c$. Each $(E_i)^c$ is clearly open. Since E_i is nowhere dense, E_i^c contains no open set and thus every nonempty open set intersects $(E_i)^c$. Thus, $(E_i)^c$ is dense.

“If” Suppose $B \supseteq \bigcap_i U_i$ where each U_i is open and dense. Then $B^c \subseteq \bigcup_i (U_i)^c$ and so $B^c = \bigcup_i (U_i)^c \cap B^c$ and since $(U_i)^c \cap B^c$ is contained in $(U_i)^c$, a closed nowhere dense set, and since any subset of a nowhere dense is nowhere dense, B^c is a countable union of nowhere dense sets. □

4. Which of the following NVS are separable?: $C([0, 1]), C^1([0, 1]), C_0(\mathbb{R}), C_c(\mathbb{R}), L^\infty(\mathbb{R}, \mu)$ where μ is Lebesgue measure? (for each of these spaces the norm is the sup norm except for $C^1([0, 1])$ whose norm is $\|f\|_{C^1} = \|f\|_{\text{sup}} + \|f'\|_{\text{sup}}$ and for $L^\infty(\mathbb{R}, \mu)$ whose norm is the essential sup norm). For each that is separable, exhibit a countable dense subset (and at least give a rough argument for why the subset is dense). For each that is not separable, give a complete argument.

Solution: $C([0, 1])$, with sup norm, is separable by Stone-Weirstrass with polynomials with rational coefficients as countable dense set.

$C^1([0, 1])$ has norm $\|f\|_{C^1} = \|f\|_{\text{sup}} + \|f'\|_{\text{sup}}$.

Claim: $C^1([0, 1])$ is separable with polynomials with rational coefficients as countable dense set.

Proof: Given $f \in C^1([0, 1])$ and $\epsilon > 0$, find by Stone-Weirstrass, a polynomial $p(x)$ s.t. $\|f' - p\|_{\text{sup}} < \epsilon$. Let $P(x) = \int_0^x p(t)dt$. Then for all $x \in [0, 1],$

$$|f(x) - f(0) - P(x)| = |\int_0^x f'(t)dt - \int_0^x p(t)dt| \leq \int_0^x |f'(t) - p(t)|dt \leq \epsilon.$$

Let $Q(x) = f(0) + P(x)$. Then $\|f - Q\|_{\text{sup}} \leq \epsilon$ and $\|f' - Q'\|_{\text{sup}} = \|f' - p\|_{\text{sup}} \leq \epsilon$.

Now, approximate the polynomial $Q(x)$ with a polynomial with rational coefficients. □

$C_0(\mathbb{R})$ and $C_c(\mathbb{R})$, with sup norm, are separable with countable dense set $\bigcup_{n=1}^\infty D_n$ where D_n is the set of all functions of the form

$$\begin{align*}
p(x) & \quad -n \leq x \leq n \\
q(x) & \quad -n - 1 \leq x \leq -n \\
r(x) & \quad n \leq x \leq n + 1 \\
0 & \quad |x| > n + 1
\end{align*}$$
where \(p(x) \) is a polynomial with rational coefficients, \(q(x) \) is the function whose graph is the line determined \((-n - 1, 0)\) and \((-n, p(-n))\), \(r(x) \) is the function whose graph is the line determined by \((n, p(n))\) and \((n + 1, 0)\).

\(L^\infty(\mathbb{R}, \mu) \), with sup norm, is not separable. As in the argument given in class that \(\ell^\infty \) is not separable, it suffices to find an uncountable collection of elements of \(L^\infty(\mathbb{R}, \mu) \) whose pairwise distances are all equal to 1. Such a collection is

\[
\{ \sum a_n \chi_{(n,n+1)} : a_n \in \{0, 1\} \}
\]

5. Let \(X, Y \) be Banach spaces. Show that the collection of surjective BLTs from \(X \) onto \(Y \) is open in the space \(L(X, Y) \) of BLTs, with the operator norm topology on \(L(X, Y) \).

Solution:

If there is no surjective element of \(L(X, Y) \), we are done already.

Let \(T \) be a surjective BLT from \(X \) onto \(Y \). By the open mapping theorem, there exists \(r > 0 \) s.t. \(B_1(0) \subset T(B_r(0)) \).

Let \(S \in L(X, Y) \) such that \(\|S - T\| < \frac{1}{2r} \). We claim that \(S \) is surjective.

We will show that any \(y \in Y \) is in the image of \(S \). We can assume that \(y \neq 0 \) and \(\|y\| \leq 1 \) by replacing \(y \) with \(\frac{y}{\|y\|} \). We constuct, by induction, an absolutely convergent sequence \(x_i \) such that \(\|S(\sum_{i=0}^N x_i) - y\| \leq \frac{1}{2i+1} \) for all \(N \).

Observe that \(y \in \overline{B}_1(0) \subset T(\overline{B}_r(0)) \), so there is some \(x_0 \in \overline{B}_r(0) \) such that \(y = T(x_0) \) and

\[
\|S(x_0) - y\| = \|S(x_0) - T(x_0)\| \leq \|S - T\| \|x_0\| \leq \frac{1}{2r} \cdot \frac{1}{2} = \frac{1}{2}.
\]

From this we get that \((S(x_0) - y) \in \overline{B}_{1/2}(0) \), so again using \(\overline{B}_1(0) \subset T(\overline{B}_r(0)) \), we get some \(x_1 \in \overline{B}_{r/2}(0) \) such that \(T(x_1) = (y - S(x_0)) \). So

\[
\|S(x_0 + x_1) - y\| = \|S(x_1) - (y - S(x_0))\| = \|S(x_1) - T(x_1)\| \leq \|S - T\| \|x_1\| \leq \frac{1}{2} \cdot \frac{r}{2} = \frac{1}{4}.
\]

Continuing the process by induction, we get a sequence \((x_n) \) in \(X \) such that \(\|x_n\| \leq r/2^n \) and

\[
\left\| \sum_{i=0}^n x_i - y \right\| \leq \frac{1}{2^{n+1}}.
\]

Indeed, at step \(n \), we get \(x_{n+1} \in B_{r/2^{n+1}}(0) \) such that \(T(x_{n+1}) = y - S(\sum_{i=0}^n x_i) \). So,

\[
\|S(\sum_{i=0}^{n+1} x_i) - y\| = \|S(x_{n+1}) - (y - S(\sum_{i=0}^n x_i))\|
\]

\[
= \|S(x_{n+1}) - T(x_{n+1})\| \leq \|S - T\| \|x_{n+1}\| \leq \frac{1}{2r} \cdot \frac{r}{2^{n+1}} = \frac{1}{2^{n+2}}.
\]

By completeness of \(X \), absolute convergence of \(x_n \), and continuity of \(S \), \(\sum_{n=1}^\infty x_n \) converges to some \(x \in X \) such that \(S(x) = y \).
6. Let \(H \) be the space of absolutely continuous functions \(f : [0, 1] \to \mathbb{C} \) such that \(f(0) = f(1) = 0 \), and \(f' \in L^2([0, 1]) \).

(a) Show that \(H \) is a Hilbert space with inner product
\[
\langle f, g \rangle = \int_{[0,1]} f'(x) \overline{g'(x)} \, dx.
\]

(b) Consider the evaluation map \(\text{ev}_a(f) = f(a) \). Find the unique \(f_a \in H \) such that for all \(f \in H \) we have
\[
f(a) = \text{ev}_a(f) = \langle f, f_a \rangle.
\]

Hint: Consider a piecewise linear function on \([0, 1]\).

Solution:

a. It is straightforward to check that the inner product really is an inner product space. For completeness, let \(f_n \) be a Cauchy sequence in this space. This means that \(f_n' \) is Cauchy in \(L^2 \) and since \(L^2 \) is complete, \(f_n' \) converges to some \(g \) in \(L^2 \). Let \(f(x) = \int_0^x g(t) \, dt \). Then \(f'(x) = g(x) \) a.e. Clearly, \(f(0) = 0 \). We claim that \(f(1) = 0 \). To see this, observe that by the Holder inequality,
\[
||f'||_1 - ||f'_n||_1 \leq ||f' - f'_n||_1 \leq ||f' - f'_n||_2
\]
Since each \(||f'_n||_1 = f_n(1) - f_n(0) = 0 \), it follows that \(f(1) - f(0) = ||f'||_1 = 0 \) and so \(f(1) = 0 \).
Thus, \(f \) is absolutely continuous, \(f(1) = f(0) = 0 \), and \(f' \in L^2 \), we have \(f \in H \) and \(f_n \) converges to \(f \) in \(H \).

b. the solution is for \(f_a \) to be a triangular function
\[
f_a(t) = \begin{cases}
 x & \text{if } 0 \leq x \leq a \\
 a - \frac{a}{1-a}(x-a) & \text{for } a \leq x \leq 1
\end{cases}
\]

Then
\[
\langle f, f_a \rangle = \int_0^a f'(t) \, dt - \frac{a}{1-a} \int_a^0 f'(t) \, dt = (f(a) - f(0)) - \frac{a}{1-a}(f(1) - f(a)) = f(a)(1 + \frac{a}{1-a}) = f(a).
\]