HW5, Due Friday, March 29, 11AM

1. Let X and Y be NVS. Show that the product topology of $X \times Y$, with X and Y given their norm topology, is the same as the topology given by the product norm: $\|(x, y)\|=\|x\|+\|y\|$.

Proof: a set is open in the product topology iff it is a union of sets $U \times V$ where U is open in X and V is open in Y iif it is union of set $B_{\epsilon}(x) \times B_{\delta}(y)$.

$$
B_{\gamma}((x, y))=\cup_{\delta \leq \gamma} B_{\delta}(x) \times B_{\gamma-\delta}(y)
$$

Given (x, y) and $\gamma>0$,

$$
(x, y) \in B_{\gamma / 2}(x) \times B_{\gamma / 2}(y) \subset B_{\gamma}((x, y))
$$

Given $(x, y), \epsilon, \delta>0$, let $\gamma=\min (\epsilon, \delta)$,

$$
(x, y) \in B_{\gamma}((x, y)) \subset B_{\delta}(x) \times B_{\epsilon}(y)
$$

2. In a topological space, the closure of a subset A is the intersection of all closed sets that contain A. And the interior of a subset A is the union of all open sets that are contained in A. Show the following.
(a) The closure of a set is closed, and a set is closed iff it equals its closure.
(b) The closure of A is the set of all x such that every neighbourhood of x intersects A.
(c) The interior of a set is open, and the set is open iff it equals its interior.
(d) The interior of A is the set of all x such that there exists a neighbourhood of x that is contained in A.

Solution:
a.
i. The closure of a set is the intersection of closed sets and thus is closed.
ii. If a set A is closed then it is the intersection of all closed sets containing A, and thus A equals its closure. If a set equals its closure, then by virtue of i , it is closed.
b. Suppose $x \in \bar{A}$. If some nbhd. U of x is disjoint from A, then U^{c} is a closed set containing A and therefore containing the closure of A, contradicting $x \in \bar{A}$.
Suppose that every neighbourhood of x intersects A. If $x \notin \bar{A}$, then \bar{A}^{c} is a nbhd. of x that is disjoint from A, a contradiction. Thus, $x \in \bar{A}$.
Solutions to c and d are obtained by complementing a and b, using the fact that for any set A the interior of A is $(\bar{A})^{c}$.
3. Show that a set is a countable union of nowhere dense sets iff its complement contains the intersection of a countable collection of dense open sets.

Proof: "Only if:" $A=\cup E_{i}$ where each E_{i} is nowhere dense. Then $A^{c} \supseteq \cap_{i}\left(\overline{E_{i}}\right)^{c}$. Each $\left(\overline{E_{i}}\right)^{c}$ is clearly open. Since E_{i} is nowhere dense, $\overline{E_{i}}$ contains no open set and thus every nonempty open set intersects $\left(\overline{E_{i}}\right)^{c}$. Thus, $\left(\overline{E_{i}}\right)^{c}$ is dense.
"If" Suppose $B \supseteq \cap_{i} U_{i}$ where each U_{i} is open and dense. Then

$$
B^{c} \subseteq \cup_{i}\left(U_{i}\right)^{c}
$$

and so

$$
B^{c}=\cup_{i}\left(U_{i}\right)^{c} \cap B^{c}
$$

and since $\left(U_{i}\right)^{c} \cap B^{c}$ is contained in $\left(U_{i}\right)^{c}$, a closed nowhere dense set, and since any subset of a nowhere dense is nowhere dense, B^{c} is a countable union of nowhere dense sets.
4. Which of the following NVS are separable?: $C([0,1]), C^{1}([0,1]), C_{0}(\mathbb{R}), C_{c}(\mathbb{R}), L^{\infty}(\mathbb{R}, \mu)$ where μ is Lebesgue measure? (for each of these spaces the norm is the sup norm except for $C^{1}([0,1])$ whose norm is $\|f\|_{C^{1}}=\|f\|_{\text {sup }}+\left\|f^{\prime}\right\|_{\text {sup }}$ and for $L^{\infty}(\mathbb{R}, \mu)$ whose norm is the essential sup norm). For each that is separable, exhibit a countable dense subset (and at least give a rough argument for why the subset is dense). For each that is not separable, give a complete argument.
Solution: $C([0,1])$, with sup norm, is separable by Stone-Weirstrass with polynomials with rational coefficients as countable dense set.
$C^{1}([0,1])$ has norm $\|f\|_{C^{1}}=\|f\|_{\text {sup }}+\left\|f^{\prime}\right\|_{\text {sup }}$.
Claim: $C^{1}([0,1])$ is separable with polynomials with rational coefficients as countable dense set.

Proof: Given $f \in C^{1}([0,1])$ and $\epsilon>0$, find by Stone-Weirstrass, a polynomial $p(x)$ s.t. $\left\|f^{\prime}-p\right\|_{\text {sup }}<\epsilon$. Let $P(x)=\int_{0}^{x} p(t) d t$. Then for all $x \in[0,1]$,

$$
|f(x)-f(0)-P(x)|=\left|\int_{0}^{x} f^{\prime}(t) d t-\int_{0}^{x} p(t) d t\right| \leq \int_{0}^{x}\left|f^{\prime}(t)-p(t)\right| d t \leq \epsilon
$$

Let $Q(x)=f(0)+P(x)$. Then $\|f-Q\|_{\text {sup }} \leq \epsilon$ and $\left\|f^{\prime}-Q^{\prime}\right\|_{\text {sup }}=\left\|f^{\prime}-p\right\|_{\text {sup }} \leq \epsilon$.
Now, approximate the polynomial $Q(x)$ with a polynomial with rational coefficients.
$C_{0}(\mathbb{R})$ and $C_{c}(\mathbb{R})$, with sup norm, are separable with countable dense set $\cup_{n=1}^{\infty} D_{n}$ where D_{n} is the set of all functions of the form

$$
\left\{\begin{array}{cc}
p(x) & -n \leq x \leq n \\
q(x) & -n-1 \leq x \leq-n \\
r(x) & n \leq x \leq n+1 \\
0 & |x|>n+1
\end{array}\right\}
$$

where $p(x)$ is a polynomial with rational coefficients, $q(x)$ is the function whose graph is the line determined $(-n-1,0)$ and $(-n, p(-n)), r(x)$ is the function whose graph is the line determined by $(n, p(n))$ and $(n+1,0)$.
$L^{\infty}(\mathbb{R}, \mu)$, with sup norm, is not separable. As in the argument given in class that ℓ^{∞} is not separable, it suffices to find an uncountable collection of elements of $L^{\infty}(\mathbb{R}, \mu)$ whose pairwise distances are all equal to 1 . Such a collection is

$$
\left\{\sum a_{n} \chi_{(n, n+1)}: a_{n} \in\{0,1\}\right\}
$$

5. Let X, Y be Banach spaces. Show that the collection of surjective BLTs from X onto Y is open in the space $L(X, Y)$ of BLTs, with the operator norm topology on $L(X, Y)$. Solution:

If there is no surjective element of $L(X, Y)$, we are done already.
Let T be a surjective BLT from X onto Y. By the open mapping theorem, there exists $r>0$ s.t. $\overline{B_{1}(0)} \subset T\left(\overline{B_{r}(0)}\right)$.
Let $S \in L(X, Y)$ such that $\|S-T\|<\frac{1}{2 r}$. We claim that S is surjective.
We will show that any $y \in Y$ is in the image of S. We can assume that $y \neq 0$ and $\|y\| \leq 1$ by replacing y with $\frac{y}{\|y\|}$. We constuct, by induction, an absolutely convergent sequence x_{i} such that $\left\|S\left(\sum_{i=0}^{N} x_{i}\right)-y\right\| \leq \frac{1}{2^{N+1}}$ for all N.
Observe that $y \in \bar{B}_{1}(0) \subset T\left(\bar{B}_{r}(0)\right)$, so there is some $x_{0} \in \bar{B}_{r}(0)$ such that $y=T\left(x_{0}\right)$ and

$$
\left\|S\left(x_{0}\right)-y\right\|=\left\|S\left(x_{0}\right)-T\left(x_{0}\right)\right\| \leq\|S-T\|\left\|x_{0}\right\| \leq \frac{1}{2 r} r=\frac{1}{2} .
$$

From this we get that $\left(S\left(x_{0}\right)-y\right) \in \bar{B}_{1 / 2}(0)$, so again using $\bar{B}_{1}(0) \subset T\left(\bar{B}_{r}(0)\right)$, we get some $x_{1} \in B_{r / 2}(0)$ such that $T\left(x_{1}\right)=\left(y-S\left(x_{0}\right)\right)$. So

$$
\left\|S\left(x_{0}+x_{1}\right)-y\right\|=\left\|S\left(x_{1}\right)-\left(y-S\left(x_{0}\right)\right)\right\|=\left\|S\left(x_{1}\right)-T\left(x_{1}\right)\right\| \leq\|S-T\|\left\|x_{1}\right\| \leq \frac{1}{2 r} \frac{r}{2}=\frac{1}{4}
$$

Continuing the process by induction, we get a sequence $\left(x_{n}\right)$ in X such that $\left\|x_{n}\right\| \leq$ $r / 2^{n}$ and

$$
\left\|S\left(\sum_{i=0}^{n} x_{i}\right)-y\right\| \leq \frac{1}{2^{n+1}}
$$

Indeed, at step n, we get $x_{n+1} \in B_{r / 2^{n+1}}(0)$ such that $T\left(x_{n+1}\right)=y-S\left(\sum_{i=0}^{n} x_{i}\right)$. So,

$$
\begin{gathered}
\left\|S\left(\sum_{i=0}^{n+1} x_{i}\right)-y\right\|=\left\|S\left(x_{n+1}\right)-\left(y-S\left(\sum_{i=0}^{n} x_{i}\right)\right)\right\| \\
=\left\|S\left(x_{n+1}\right)-T\left(x_{n+1}\right)\right\| \leq\|S-T\|\left\|x_{n+1}\right\| \leq \frac{1}{2 r} \frac{r}{2^{n+1}}=\frac{1}{2^{n+2}} .
\end{gathered}
$$

By completeness of X, absolute convergence of x_{n}, and continuity of $S, \sum_{n=1}^{\infty} x_{n}$ converges to some $x \in X$ such that $S(x)=y$.
6. Let H be the space of absolutely continuous functions $f:[0,1] \rightarrow \mathbb{C}$ such that $f(0)=$ $f(1)=0$, and $f^{\prime} \in L^{2}([0,1])$.
(a) Show that H is a Hilbert space with inner product

$$
\langle f, g\rangle=\int_{[0,1]} f^{\prime}(x) \overline{g^{\prime}(x)} \mathrm{d} x
$$

(b) Consider the evaluation map $\operatorname{ev}_{a}(f)=f(a)$. Find the unique $f_{a} \in H$ such that for all $f \in H$ we have

$$
f(a)=\operatorname{ev}_{a}(f)=\left\langle f, f_{a}\right\rangle
$$

Hint: Consider a piecwise linear function on $[0,1]$.

Solution:

a. It is straightforward to check that the inner product really is an inner product space.

For completeness, let f_{n} be a Cauchy seqnence in this space. This means that f_{n}^{\prime} is Cauchy in L^{2} and since L^{2} is complete, f_{n}^{\prime} converges to some g in L^{2}. Let $f(x)=$ $\int_{0}^{x} g(t) d t$. Then $f^{\prime}(x)=g(x)$ a.e. Clearly, $f(0)=0$. We claim that $f(1)=0$. To see this, observe that by the Holder inequality,

$$
\left|\left\|f^{\prime}\right\|_{1}-\left\|f_{n}^{\prime}\right\|_{1}\right| \leq\left\|f^{\prime}-f_{n}^{\prime}\right\|_{1} \leq\left\|f^{\prime}-f_{n}^{\prime}\right\|_{2}
$$

Since each $\left\|f_{n}^{\prime}\right\|_{1}=f_{n}(1)-f_{n}(0)=0$, it follows that $f(1)-f(0)=\left\|f^{\prime}\right\|_{1}=0$ and so $f(1)=0$.
Thus, f is absolutely continuous, $f(1)=f(0)=0$, and $f^{\prime} \in L^{2}$, we have $f \in H$ and f_{n} converges to f in H.
b. the solution is for f_{a} to be a triangular function

$$
f_{a}(t)=\left\{\begin{array}{l}
x \text { if } 0 \leq x \leq a \\
a-\frac{a}{1-a}(x-a) \text { for } a \leq x \leq 1
\end{array}\right.
$$

Then

$$
\left\langle f, f_{a}\right\rangle=\int_{0}^{a} f^{\prime}(t) \mathrm{d} t-\frac{a}{1-a} \int_{a}^{0} f^{\prime}(t)=(f(a)-f(0))-\frac{a}{1-a}(f(1)-f(a))=f(a)\left(1+\frac{a}{1-a}\right)=f(a) .
$$

