1. Let X and Y be NVS. Show that the product topology of $X \times Y$, with X and Y given their norm topology, is the same as the topology given by the product norm: $\|(x, y)\|=\|x\|+\|y\|$.
2. In a topological space, the closure of a subset A is the intersection of all closed sets that contain A. And the interior of a subset A is the union of all open sets that are contained in A. Show the following.
(a) The closure of a set is closed, and a set is closed iff it equals its closure.
(b) The closure of A is the set of all x such that every neighbourhood of x intersects A.
(c) The interior of a set is open, and the set is open iff it equals its interior.
(d) The interior of A is the set of all x such that there exists a neighbourhood of x that is contained in A.
3. Show that a set is a countable union of nowhere dense sets iff its complement contains the intersection of a countable collection of dense open sets.
4. Which of the following NVS are separable?: $C([0,1]), C^{1}([0,1]), C_{0}(\mathbb{R}), C_{c}(\mathbb{R}), L^{\infty}(\mathbb{R}, \mu)$ where μ is Lebesgue measure? (for each of these spaces the norm is the sup norm except for $C^{1}([0,1])$ whose norm is $\|f\|_{C^{1}}=\|f\|_{\text {sup }}+\left\|f^{\prime}\right\|_{\text {sup }}$ and for $L^{\infty}(\mathbb{R}, \mu)$ whose norm is the essential sup norm). For each that is separable, exhibit a countable dense subset (and at least give a rough argument for why the subset is dense). For each that is not separable, give a complete argument.
5. Let X, Y be Banach spaces. Show that the collection of surjective BLTs from X onto Y is open in the space $L(X, Y)$ of BLTs, with the operator norm topology on $L(X, Y)$.
6. Let H be the space of absolutely continuous functions $f:[0,1] \rightarrow \mathbb{C}$ such that $f(0)=$ $f(1)=0$, and $f^{\prime} \in L^{2}([0,1])$.
(a) Show that H is a Hilbert space with inner product

$$
\langle f, g\rangle=\int_{[0,1]} f^{\prime}(x) \overline{g^{\prime}(x)} \mathrm{d} x
$$

(b) Consider the evaluation $\operatorname{map}_{\operatorname{ev}_{a}}(f)=f(a)$. Find the unique $f_{a} \in H$ such that for all $f \in H$ we have

$$
f(a)=\mathrm{ev}_{a}(f)=\left\langle f, f_{a}\right\rangle
$$

Hint: Consider a piecwise linear function on $[0,1]$.

