
HW4, Due Friday, March 8, 11AM

1. (a) Show that the kernel of a BLF on a Banach space is closed.

(b) Shat that the orthogonal complement of the kernel of a BLF on Hilbert space has
dimension at most one.

Solution:

a. Let X denote the Banach space. Since any BLF is continuous, if xn ∈ Kerf and
xn → x ∈ X then

f(x) = lim
xn→x

f(xn) = lim
xn→x

0 = 0.

b. By a, W = Ker f is a closed subspace of X, a Hilbert space, and thus has an
orthogonal complement W⊥.

Let x, x′ ∈ W⊥ s.t. f(x) = f(x′). Then x − x′ ∈ Ker f and so 〈x, x − x′〉 = 0 and
〈x′, x−x′〉 = 0 and so ‖x−x′‖2 = 〈x−x′, x−x′〉 = 0 and so x = x′. Thus, f : W⊥ → K
is an injective linear map into K and thus a vector space isomorphism from W⊥ onto
its image which is either 0 or K and so W⊥ has dimension 0 or 1.

2. Show that if ‖ · ‖ is a norm on a real vector space that satisfies the parallelogram law
then

〈x, y〉 := (1/4)(‖x+ y‖2 − ‖x− y‖2) (1)

is an inner product whose induced norm agrees with ‖ · ‖. And thus show that a real
Banach space is a real Hilbert space iff its norm satisfies the parallelogram law.

Hint: To prove bilinearity of 〈x, y〉,

(a) first show
〈v + w, u〉 = 〈v, u〉+ 〈w, u〉

(b) then use part (a) to show for all rational α

〈αx, y〉 = α〈x, y〉 (2)

(c) then show (2) for all α.

Solution:

By substituting y = x in the definition of the inner product, one sees that the norm
induced by the inner product is indeed the original norm.

To show that the alleged inner product really is an inner product, we check:

Positivity: This follows immediately from properties of the norm.

Symmetry: This is obvious.

Bi-linearity: because of symmetry we need only check linearity in the first coordinate
of the inner product.
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3. Recall that for a complex Hilbert space H and y ∈ H, y∗(x) = 〈x, y〉 is a BLF.

Show that 〈y∗, z∗〉H∗ := 〈z, y〉H is an inner product on H∗.

Solution:

Positivity:
〈y∗, y∗〉H∗ := 〈y, y〉H ≥ 0 and = 0 iff y = 0 iff y∗ = 0

Skew-symmetry:
〈y∗, z∗〉H∗ := 〈z, y〉H = 〈y, z〉H = 〈z∗, y∗〉H∗

Sesqui-linearity: First observe that

ay∗ + bz∗ = (ay + bz)∗

because for all x,

(ay∗ + bz∗)(x) = ay∗(x) + bz∗(x) = a〈x, y〉+ b〈x, z〉

= 〈x, ay〉+ 〈x, bz〉 = 〈x, ay + bz〉 = (ay + bz)∗(x).

So,
〈ay∗ + bz∗, w∗〉H∗ = 〈w, ay + bz〉H

= a〈w, y〉H + b〈w, z〉H = a〈y∗, w∗〉H∗ + b〈z∗, w∗〉H∗

And similarly

〈w∗, ay∗ + bz∗〉H∗ = 〈w∗, (ay + bz)∗〉H∗ = 〈ay + bz, w〉H

= a〈y, w〉H + b〈z, w〉H = a〈w∗, y∗〉H∗ + b〈w∗, z∗〉H∗

4. Let V be a vector space and W be a subspace of V . Let V/W denote the set of
equivalence classes of the relation v1 ∼ v2 iff v1 − v2 ∈ W . So, the equivalence classes
are of the form [v] = v +W . Define a vector space structure on V/W by

(v1 +W ) + (v1 +W ) = (v1 + v2) +W

and
λ(v +W ) = λv +W.

(a) Show that V/W is a well-defined vector space (just show that the vector addition
and scalar multiplication operations on V/W are well-defined, identify the zero
element of V/W amd the additive inverses in V/W ).

(b) Show that if ‖ · ‖ is a norm on V and W is a closed subspace, then

‖x+W‖W := inf
w∈W
‖x+ w‖

is a norm on V/W .
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(c) Show that, with the hypotheses in part b, π : V → V/W , defined by π(v) = v+W ,
is a BLT.

(d) Show that if (V, ‖ · ‖) is a Banach space and W is a closed subspace, then
(V/W, ‖ · ‖W ) is a Banach space. Hint: use part c and Folland Theorem 5.1.

(e) Show that if V is a Hilbert space and W is a closed subspace, then V/W is
isometrically isomorphic to W⊥.

Solution:

a. If v′1 = v1 + w1, v
′
2 = v2 + w2, with w1, w2 ∈ W , then

(v′1 +W ) + (v′2 +W ) = ((v1 + w1) +W ) + ((v2 + w2) +W ) = (v1 +W ) + (v2 +W )

and so addition is well-defined. Similarly, scalar multiplication is well-defined.

The zero element is the equivalence class W and the additive inverse of v + W is
−v +W .

b. Positivity: Clearly ‖ · ‖W ≥ 0. If ‖x + W‖W = 0, then there exist wn ∈ W s.t.
‖x + wn‖ → 0 and so wn → −x. Since W is closed, x ∈ W and so x + W = W , the
zero element of V/W .

Homogeneity: If λ 6= 0,

‖λx+W‖W = |λ| ‖x+ λ−1W‖W = |λ| ‖x+W‖W

If λ = 0, then
‖λx+W‖W = ‖W‖W = 0.

Triangle inequality: Let y, z ∈ X. Given ε > 0, let u, v ∈ W s.t.

‖y + u‖ ≤ ‖y +W‖W + ε, |z + v‖ ≤ ‖z +W‖W + ε

The

‖(y+ z) +W‖W ≤ ‖y+ z+ u+ v‖ ≤ ‖y+ u‖+ ‖z+ v‖ ≤ ‖y+W‖W + ‖z+W‖W + 2ε

Thus,
‖(y + z) +W‖W ≤ ‖y +W‖W + ‖z +W‖W

c. π is linear by the definitions of vector addition and scalar multiplication in V/W .

And ‖π(x)‖ = ‖x + W‖ ≤ ‖x‖ and so π is a BLT with ‖π‖ ≤ 1 (it turns out that
‖π‖ = 1 but we won’t need this).

d. Let xn +W be an absolutely convergent series in V/W , i.e.
∑

n ‖xn +W‖ <∞.

For each n, there exist x′n ∈ xn+W s.t. ‖x′n‖ ≤ ‖xn+W‖+1/n2. Thus, x′n is absolute;y
convergent in V . Since V is a Banach space,

∑
x′n converges to some x ∈ V . But since

π is a BLT it is continuuous and so

π(x) =
∑
n

π(x′n) =
∑
n

(xn +W )
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Thus, the series converges.

e. Define Φ : W⊥ → V/W by Φ(z) = z +W .

Linear:
Φ(a1z1 + a2z2) = a1z1 + a2z2 +W = a1(z1 +W ) + a2(z2 +W )

Norm-preserving: for z ∈ W⊥ and w ∈ W , since 〈w, z〉 = 0,

‖w + z‖2 = ‖w‖2 + ‖z‖2 ≥ ‖z‖2

and so
‖Φ(z)‖ = inf

w∈W
‖w + z‖ = ‖z‖

Injective: follows from norm-preserving.

Surjective: Given x+W , write x = w+ z with w ∈ W, z ∈ W⊥. Then x+W = z+W
and so Φ(z) = x+W .

5. (a) Let X = `∞ and W = c0, a closed subspace of X. Let x = (1, 1, 1, · · ·).
Find infy∈W ‖x− y‖sup and show that the inf is achieved but not uniquely.

(b) Let

W = {f ∈ C([0, 1]) :

∫ 1/2

0

f(t)dt−
∫ 1

1/2

f(t)dt = 1}

Find inff∈W ‖f‖sup and show that the inf is not achieved at all.

Solution:

a. For all y ∈ c0,
lim
n→∞

|xn − yn| = 1.

Thus, for all y ∈ c0, ‖x− y‖sup ≥ 1. For any standard basis vector en, ‖x− en‖sup = 1.

Thus, infy∈W ‖x− y||sup = 1 and is achieved by any en.

So, in a Banach space (in contrast to a Hilbert space), the distince from a point to a
closed subspace need not be achieved uniquely.

b. For all f ∈ C([0, 1]), ∫ 1/2

0

f(t)dt ≤ (1/2)‖f‖

and

−
∫ 1

1/2

f(t)dt ≤ (1/2)‖f‖

So, if f ∈ W , then

1 =

∫ 1/2

0

f(t)dt−
∫ 1

1/2

f(t)dt ≤ (1/2)‖f‖+ (1/2)‖f‖ = ‖f‖

and so ‖f‖ ≥ 1 and so inff∈W ‖f‖ ≥ 1.
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We claim that there does not exist f ∈ W s.t. ‖f‖ = 1: If such an f , exists then by
the above, ∫ 1/2

0

f(t)dt = (1/2), −
∫ 1

1/2

f(t)dt = (1/2)

and since f is continuous, f(x) = 1 for 0 ≤ x ≤ 1/2 and f(x) = −1 for 1/2 ≤ x ≤ 1, a
contradiction.

We will construct fε ∈ W s.t. ‖fε‖ = 1 + ε. It follows that inff∈W ‖f‖sup = 1 and the
inf is not achieved.

Given ε > 0, let fε be the function whose graph is the polygonal path that connects
(0, 1 + ε) to (1/2− ε/(1 + ε), 1 + ε) to (1/2 + ε/(1 + ε),−(1 + ε)) to (0,−(1 + ε)).

Then fε ∈ W and ‖fε‖ = 1 + ε.

So, in a Banach space (in contrast to a Hilbert space), the distance from a point to a
closed convex subset need not be achieved at all; one can re-cast this example to show
that the distance from a point to a closed subspace need not be achieved at all .

———————————————————————

Definitions for Problems 6 and 7:

A topological space (X, T ) is a set X together with a topology T which is a collection of
subsets of X that is closed under arbitrary unions and finite intersections and includes
the empty set and X.

An open set in a topological space (X, T ) is an element of T . A closed set is the
complement of an open set.

A subset K of a topological space is compact if every open cover of K has a finite
subcover.

A mapping f from one topological space X to another Y is continuous if for every
open set U in Y , f−1(U) is open in X.

A mapping f from one topological space X to another Y is an open mapping if for
every open set U in X, f(U) is open in Y .

A mapping f from one topological space X to another Y is a closed mapping if for
every closed set U in X, f(U) is closed in Y .

A topological space (X, T ) is Hausdorff if for all x, y ∈ X, x 6= y, there exist disjoint
open sets U and V s.t. x ∈ U and y ∈ V .

6. (a) Show that any metric space is Hausdorff.

(b) Show that in a topological space a closed subset of a compact set is compact.

(c) Show that in a Hausdorff space, any compact set is closed.

(d) Let X and Y be topological spaces. Let f : X → Y be a continuous mapping and
K ⊆ X a compact set. Show that the image, f(K), is compact.
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(e) Show that any continuous map from a compact set to a Hausdorff space is a closed
mapping.

(f) Show that a continuous map from a compact set to a Hausdorff space need not
be an open mapping.

(g) Show that a bijective continuous map from a compact set in a topological space
to a Hausdorff space is a homeomorphism.

Solution:

a. Given x 6= y in a metric space, Bd(x,y)/2(x) and Bd(x,y)/2(y) are disjoint open balls
and therefore disjoint open sets with x ∈ Bd(x,y)/2(x) and y ∈ Bd(x,y)/2(x).

b. Let L be a closed subset of a compact set K in a topological space X. Let {Uα}α∈A
be an open cover of L. Then {{Uα}α∈A, Lc} is an open cover of K. Since K is compact,
the cover has a finite subcover {Vi}i=1,...,n of K. This is also a finite subcover of L.

c. Let K be a compact subset of a topological space X. To show that K is closed, we
show that Kc is open. For this, we show that for all x ∈ Kc, there is an open set U
s.t. x ∈ U ⊂ Kc.

For each y ∈ K, there exist Uy, Vy be disjoint open sets s.t. x ∈ Uy, y ∈ Vy. Then
{Vy}y∈K is an open cover of K, which must have a finite subcover Vy1 , . . . , Vyn . But
then x ∈ U := ∩ni=1Uyi which is an open set disjoint from ∪ni=1Vyi ⊃ K. Thus, U is an
open set s.t. x ∈ U ⊂ Kc.

d. Let {Uα}α∈A be an open cover of f(K). Then {f−1(Uα)}α∈A is an open cover of
K. Since K is compact, there is a finite subcover {f−1(Ui)}i=1,...,n of K. But then
{Ui}i=1,...,n is a finite subcover of f(K).

e. Let L be a closed subset of the domain, which is compact. By part b, L is compact
and thus by part d, f(L) is compact and thus by part c, f(L) is closed.

f. The map from [0, 1] to the unit circle given by f(θ) = e2πiθ is continuous but not
open because the image of the open set [0, 1/2) is not open in the unit circle (here, we
are using the relative topologies on the unit interval and the unit circle).

g. By part e, f is a closed mapping. Since f is bijective, f is an open mapping. Thus
f−1 is continuous and so f is a homeomorphism.

7. Let {(Xα, Tα)}α∈A be a collection of topological spaces. Let

X = ΠαXα = {x = {xα}α : xα ∈ Xα}.

For a collection of subsets Uα in Xα, the corresponding product subset is

ΠαUα = {x ∈ X : xα ∈ Uα for all α}.

Let E denote the collection of all product subsets such that each Uα is open in Xα and
for all but finitely many α, Uα = Xα .

The product topology T is the collection of all arbitrary unions of elements of E .

The projection map πα : X → Xα is defined by πα(x) = xα.
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(a) Show that the product topology is indeed a topology.

(b) Show that the product topology is the smallest topology on X w.r.t which each
projection map is continuous.

(c) Show that all projection maps are open mappings w.r.t. the product topology.

(d) Show that the topological space (Rn, T ) where T is the collection of open sets in
the Euclidean metric, is the product of n copies of the real line, each with the
topology of open sets in the Euclidean metric on R.

(e) Show that a projection map need not be a closed mapping.

Solution:

a. This follows from the fact that E is closed under finite intersections.

b. For any α and any subset Uα ⊆ Xα,

π−1α (Uα) = Uα ×
∏
β 6=α

Xβ

Thus, each πα is continuous w.r.t. a topology T iff for every open set Uα in Xα, Uα ×∏
β 6=αXβ ∈ T . But since a topology is closed under finite intersections and abritrary

unions, this is equivalent to the condition that T contains the product topology.

So, the product topology is the smallest topology on X w.r.t which each projection
map is continuous.

c. Clearly πα maps every element of E to an open set in Xα. Thus, it maps every
union of elements of E to an open set in Xα. But this means that all open sets in the
product topology are mapped to open sets in Xα.

d. The product topology T1 on Rn is the collection of arbitrary unions of sets of the
form

U1 × · · · × Un
where each Ui is an open set in R. Since each open set in R can be written as a union
of open intervals, T1 is the collection of arbitrary unions of sets of the form

(a1, b1)× · · · × (an, bn) (3)

The Euclidean topology T2 on Rn is the collection of open balls.

Since each open ball can be written as a union of sets of the form (3) and each set of
the form (3) can be written as a union of open balls, the topologies T1 and T2 coinccide.

e. The set {(x, y) : y = 1/x, x > 0} is closed in R2 but its image via the projection
map, π1 : R2 → R, π1((x, y)) = x is (0,∞) which is not a closed set in the topology of
R.
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