Math 421/510 Homework 3: Due on Friday, Feb. 16, 11AM

1. Let μ be Lebesgue measure on [0, 1].

- (a) Show that if $f, g \in C([0,1])$ and $f = g \mu$ -a.e., then f = g, and thus for any $1 \le p \le \infty$, C([0,1]) may be regarded as a subspace of $L^p([0,1],\mu)$.
- (b) Show that the sup norm and L^1 norm on C([0,1]) are not equivalent.
- (c) Are the sup norm and L^{∞} norm on C([0, 1]) equivalent?

Solution:

a. If $f = g \mu$ -a.e., then they must agree on at least point in every subinteral and so they agree on a dense set. Since they are both continuous, they are equal.

b. For f(x) = 1 - nx on [0, 1/n] and 0 elsewhere, $||f||_{sup} = 1, ||f||_1 = 1/2n$ and so $\frac{||f||_{sup}}{||f||_1} = 2n$ can be arbitrarily large.

Alternatively note that w.r.t. the sup norm C([0, 1]) is complete but w.r.t the L^1 norm is not complete.

c. Yes. We claim that the sup and essential sup of a continuous function are equal. To see this, observe that for any $y < \sup f$, $f^{-1}(y, \infty)$ is nonempty and open and thus contains a non-empty open interval and thus has positive measure. Thus, $\sup f \leq ess \sup f$. But always $ess \sup f \leq \sup f$.

2. A metric space is *separable* if it contains a countable dense subset.

Show that any separable Banach space is isometrically isomorphic to a closed subspace of ℓ^{∞} .

Hint: Apply Theorem 5.8b to the elements of the countable dense subset.

Solution: Let X be a separable Banach space and $\{x_n\}$ a countable dense subset. By the Hahn-Banach Theorem (see Theorem 5.8b), for each n, there is a linear functional f_n s.t. $||f_n|| = 1$ and $f_n(x_n) = ||x_n||$.

Let

$$\Psi(x) = (f_1(x), f_2(x), ...)$$

 Ψ is linear since each f_i is linear.

It suffices to show that Ψ is a BLT with $\|\Psi(x)\| = \|x\|$ for all $x \in X$.

 $||\Psi|| \leq 1$:

$$||\Psi(x)|| = \sup_{n} ||f_n(x)|| \le \sup_{n} ||f_n|| \ ||x|| = ||x||$$

So Ψ is a BLT with $\|\Psi\| \leq 1$.

 Ψ preserves the norm:

Fix $x \in X$. Let $\{x_{n_i}\} \subset \{x_n\}$ be a sequence converging to x. For each i we have

 $||x_{n_i}|| \ge ||\Psi(x_{n_i})|| \ge ||f_{n_i}(x_{n_i})|| = ||x_{n_i}||$ so $||\Psi(x_{n_i})|| = ||x_{n_i}||$. We have shown that Ψ is bounded, hence continuous, and the norm is continuous, therefore

$$||x|| \ge ||\Psi(x)|| = \lim_{i \to \infty} ||\Psi(x_{n_i})|| = \lim_{i \to \infty} ||x_{n_i}|| = ||x||,$$

which yields the desired norm-preserving structure.

 Ψ is injective since it preserves the norm, hence it preserves nonzero elements. So, Ψ is a linear norm-preserving map and thus is a bijection onto its image which is contained in ℓ^{∞} .

Since isometric isomorphisms preserve completeness, the image is complete and therefore closed.

- 3. Let X be a set and let T be the set of all topologies on X, partially ordered by inclusion. Recall that an element a of a partially ordered set (poset) is maximal if $a \leq b$ implies a = b. Similarly, a is minimal if $b \leq a$ implies a = b.
 - (a) Show that T has a unique maximal element and a unique minimal element. Identify these elements. $T \in T$ s.t. $T \leq T_1$ and unique maximal element. Identify this element in terms of T_1 and T_2 .
 - (b) Given any collection \mathcal{E} of subsets of X, let $T_{\mathcal{E}}$ denote the set of all elements of T that contain \mathcal{E} . Order $T_{\mathcal{E}}$ by inclusion. Show that $T_{\mathcal{E}}$ has a unique minimal element. Identify this element in terms of \mathcal{E} .
 - (c) Let $R \subset T$. Let T_R denote the collection of all topologies $\mathcal{T} \in T$ s.t. $\mathcal{T} \subset \mathcal{R}$ for all $\mathcal{R} \in R$. Order T_R by inclusion. Show that T_R has a unique maximal element. Identify this element in terms of R.
 - (d) If $R = T_{\mathcal{E}}$ are the answers to part b and c the same?

Solution:

a. The discrete topology $\mathcal{T} = P(X)$, the set of all subsets, is maximal because clearly if $\mathcal{T} \leq \mathcal{S}$, then $\mathcal{S} = \mathcal{T}$. Similarly, the trivial topology $\mathcal{T} = \{\emptyset, X\}$ is a minimal element. Since $P(X) \geq \mathcal{S}$ for any topology \mathcal{S} , it is the unique maximal element. Similarly, the trivial topology $\mathcal{T} = \{\emptyset, X\}$ is the unique minimal element.

For parts b and c, first note that the intersection of any collection of topologies is a topology.

b. Let \mathcal{T}_{\min} be the intersection of all elements of $T_{\mathcal{E}}$. \mathcal{T}_{\min} is a topology and belongs to $T_{\mathcal{E}}$. If $\mathcal{T} \in T_{\mathcal{E}}$, then $\mathcal{T}_{\min} \subset \mathcal{T}$. So, if $\mathcal{T} \subset \mathcal{T}_{\min}$, then $\mathcal{T} = \mathcal{T}_{\min}$. So, \mathcal{T}_{\min} is a minimal element.

And if \mathcal{T} is a minimal element of $T_{\mathcal{E}}$, then since $\mathcal{T}_{\min} \subset \mathcal{T}$, we have $\mathcal{T} = \mathcal{T}_{\min}$, and so \mathcal{T}_{\min} is the unique minimal element.

c. Let \mathcal{T}_{\max} be the intersection of all elements of R. Then \mathcal{T}_{\max} is a topology and belongs to T_R . If $\mathcal{T} \in T_R$, then $\mathcal{T} \subset \mathcal{T}_{\max}$. So, if $\mathcal{T}_{\max} \subset \mathcal{T}$, then $\mathcal{T} = \mathcal{T}_{\max}$, and so \mathcal{T} is a maximal element.

If $\mathcal{T} \in T_R$ is maximal, then since $\mathcal{T} \subset \mathcal{T}_{\max}$, $\mathcal{T} = \mathcal{T}_{\max}$. So, \mathcal{R}_{\max} is the unique maximal element of R.

d. Yes. They are both the intersection of all elements of $T_{\mathcal{E}}$.

4. Defn: For a vector space X, a convex combination of $x, y \in X$ is a point of the form tx + (1-t)y such that $t \in [0, 1]$. A subset S of a NVS X is convex if whenever $x, y \in S$ then every convex combination of x, y is in S.

Let C be a convex set in a real normed vector space X and assume that $0 \in \operatorname{interior}(C)$, i.e., for some $\epsilon > 0$, $B_{\epsilon}(0) \subset C$. For $x \in X$, let

$$p(x) = \inf_{x \in \lambda C} \ \lambda > 0$$

- (a) Show that p(x) is a sublinear functional.
- (b) Give an example of a proper convex set C in \mathbb{R}^2 s.t. p(x) is a semi-norm but not a norm.
- (c) Give an example of a proper convex set C in \mathbb{R}^2 s.t. p(x) is a semilinear functional but not a semi-norm.

Solution:

a. p(x) is called the Minkowski functional.

First observe that for all x, p(x) is finite: if x = 0, then $x \in \lambda C$ for all $\lambda > 0$ and so p(0) = 0; if $x \neq 0$, then, since for some $\epsilon > 0$, $B_{\epsilon}(0) \subset C$, we have $(\epsilon/2)x/||x|| \in C$ and so $p(x) \leq 2||x||/\epsilon$.

Next observe that for all $\lambda > p(x)$, $x \in \lambda C$: there exists λ' s.t. $\lambda > \lambda' \ge p(x)$ and $x \in \lambda' C$; then $x = \lambda' c$ for some $c \in C$; then $x = \lambda(\lambda'/\lambda)c$ and $(\lambda'/\lambda)c \in C$ since it is a convex combination of c and 0: $(\lambda'/\lambda)c = (\lambda'/\lambda)c + (1 - (\lambda'/\lambda))0$; so $x \in \lambda C$.

positive homogeneity: Let $\mu > 0$. Then $x \in \lambda C$ iff $\mu x \in \mu \lambda C$ and so $\lambda > p(x)$ iff $\mu \lambda > p(\mu x)$, and so $p(\mu x) = \mu p(x)$.

subadditivity: Let $x, y \in X$. Given $\epsilon > 0$, choose $p(x) < \lambda < p(x) + \epsilon$, $p(y) < \mu < p(y) + \epsilon$. Then $x/\lambda, y/\mu \in C$ and so by convexity

$$x + y = (\lambda + \mu)\left(\frac{\lambda}{\lambda + \mu}(x/\lambda) + \frac{\mu}{\lambda + \mu}(x/\mu)\right) \in (\lambda + \mu)C$$

Thus,

$$p(x+y) \le \lambda + \mu \le p(x) + p(y) + 2\epsilon$$

Since this holds for all $\epsilon > 0$, we have $p(x + y) \le p(x) + p(y)$.

For b and c, note that p(x) is a semi-norm iff it is symmetric around the origin, i.e., $x \in C$ iff $-x \in C$; for a sublinear functional is a semi-norm iff for all x, p(-x) = p(x). b. Let C be the horizontal strip $\mathbb{R} \times [-1, 1]$. Then for all x p(x, 0) = 0. So, p is not a norm. But it is a semi-norm because it is symmetric around the origin.

c. Let C be a convex set which contains a nbhd. of the origin and is not symmetric around the origin. Specific example: the open unit disk shifted up by 1/2. Then p((0,3/4) = 1/2, but p(0,-3/4) = 3/2 and so $p(-(0,3/4)) \neq p(0,3/4)$.

5. Show that \mathbb{R}^n and \mathbb{C}^n , with each endowed by the Euclidean metric, are reflexive Banach spaces

Solution: It suffices to show that $(\mathbb{R}^n)^* = \mathbb{R}^n$ and $(\mathbb{C}^n)^* = \mathbb{C}^n$. We do the case of \mathbb{R}^n ; \mathbb{C}^n is similar.

For $y \in \mathbb{R}^n$, let L_y be the linear functional on \mathbb{R}^n defined by $L_y(x) = x \cdot y$. Then by finite-dimensional Cauchy Schwartz, L_y is a BLF with norm at most ||y||; but in fact, the norm is exactly ||y|| because

$$L_y(y) = \sum_{i=1}^n (y_i)^2 = (||y||)^2$$

Define:

$$\Psi: \mathbb{R}^n \to (\mathbb{R}^n)^*, y \mapsto L_y$$

Then Ψ is linear:

$$L_{ay+bz}(x) = x \cdot (ay+bz) = ax \cdot y + bx \cdot z = aL_y(x) + bL_z(x)$$

And norm-preserving, therefore injective, since $||L_y|| = ||y||$. Suffices to show that Ψ is surjective. Let $\phi \in (\mathbb{R}^n)^*$. Find $y \in \mathbb{R}^n$ s.t. $L_y = \phi$. Let $y_i = \phi(e^i)$. Then

$$\phi(x) = \sum_{i} x_i \phi(e_i) = \sum_{i} x_i y_i = L_y(x).$$

Alternative solution: appeal to the result proven in class that $(L^p)^* = L^q$.

6. Show that $c_0^* = \ell^1$, more precisely that there is an isometric isomorphism from ℓ^1 onto c_0^* (here, c_0 has the sup norm and ℓ^1 has the ℓ^1 norm).

Solution: For $\overline{a} \in \ell^1$ and $\overline{x} \in c_0$, define

$$\phi_{\overline{a}}(\overline{x}) = \sum_{i} a_i x_i,$$

a convergent series. And

$$|\phi_{\overline{a}}(\overline{x})| \leq \sum_{i} |a_i| |x_i| \leq (\sum_{i} |a_i|)(\sup_{i} |x_i|) = |||\overline{a}||_{\ell_1}||\overline{x}||$$

Since $\phi_{\overline{a}}$ is clearly linear, $\phi_{\overline{a}} \in c_0^*$ and $||\phi|| \leq ||\overline{a}||_{\ell_1}$.

On the other hand, letting \overline{e}^n be the *n*-th canonical basis vector and

 $\overline{x}^n = \sum_{i=1}^n sgn(a_i)\overline{e}^i$, which is in the unit sphere of c_0 , we get

$$|\phi_{\overline{a}}(\overline{x}^n)| = \sum_{i=1}^n |a_i|$$

and so for all n,

$$\sup_{\overline{x}:||\overline{x}||=1} |\phi_{\overline{a}}(\overline{x})| \ge \sum_{i=1}^{n} |a_i|$$

and so $||\phi|| = ||\overline{a}||_{\ell_1}$.

Thus, $\overline{a} \mapsto \phi_{\overline{a}}$ is a linear norm-preserving, and therefore injective, mapping from ℓ^1 into c_0^* .

It remains to show that $\overline{a} \mapsto \phi_{\overline{a}}$ is surjective.

So let $\phi \in c_0^*$. and $a_n = \phi(\overline{e}^n)$. Let

$$\overline{a} = (a_1, a_2, \ldots)$$

We claim that $\overline{a} \in \ell^1$ and $\phi_{\overline{a}} = \phi$ (surjectivity then follows). Then by linearity for all n,

$$\sum_{i=1}^{n} |a_i| = \phi(\overline{x}^n) \le ||\phi|| \ ||\overline{x}^n|| = ||\phi||$$

Thus, $\overline{a} \in \ell^1$.

Clearly ϕ and $\phi_{\overline{a}}$ agree on c_c , which is dense in c_0 . Since both ϕ and $\phi_{\overline{a}}$ are continuous on c_0 they must agree on c_0 .

7. (a) Let X be an NVS. Suppose that Y_1 and Y_2 are Banach spaces and there are isometric isomorphisms Φ_1 and Φ_2 from X into Y_1 and Y_2 whose images are dense in Y_1 and Y_2 .

Show that Y_1 and Y_2 are isometrically isomorphic.

(b) Why is the closure of the image of the canonical embedding $X \to X^{**}$, $x \mapsto \hat{x}$ isometrically isomorphic to $(\overline{X}, || \cdot ||_{\overline{X}})$ (from problem 7 in HW1 and HW2)?

Solution:

a. By HW2 #7, there is an isometric isomorphism from X to a dense subspace of \overline{X} . By transitivity of isometric isomorphism it suffices to show that if there is an isometric isomorphism of X to a dense subspace of a Banach space Z, then Z is isometrically isomorphic to \overline{X} .

We may assume that X is itself a dense subpace of Z. For $z \in Z$ let $\{x_n(z)\}$ be a sequence which converges to z. Then $x_n(z)$ is Cauchy. Thus, $[\{x_n(z)\}] \in \overline{X}$. Define

$$\Psi: Z \to \overline{X}$$

by

$$\Psi(z) = \left(\left[\left\{ x_n(z) \right\} \right] \right)$$

We claim that Ψ is an isometric isomorphism of Z onto \overline{X} .

Verify the following:

Well-defined: If x'_n is another sequence which converges to z, then $\lim_{n\to\infty} x_n(z) - x'_n = 0$ and so $\lim_{n\to\infty} ||x_n(z) - x'_n|| = 0$ and so $[\{x'_n\}] = [\{x_n(z)\}].$

Linear: Let $z, z' \in Z$. Then $\lim_{n\to\infty} x_n(z) + x_n(z') = z + z'$ and so $\lim_{n\to\infty} (x_n(z) + x_n(z')) - x_n(z+z') = 0$ and thus

$$[\{x_n(z)] + [\{x_n(z')\}] = [\{x_n(z) + x_n(z')\}] = [\{x_n(z + z')\}].$$

Norm-preserving (and thus injective):

$$||[\{x_n(z)\}]|| = \lim_{n \to \infty} ||x_n(z)|| = ||z||$$

Surjective: Let $[\{x_n\}] \in \overline{X}$. Then $\{x_n\}$ is Cauchy in X and therefore converges to some $z \in Z$ since Z is complete. Then $[\{x_n\}] = [\{x_n(z)\}]$ and so

$$\Psi(z) = [\{x_n(z)\}] = [\{x_n\}]$$

b. The image of X via the canonical embedding is dense in its closure Z which is a Banach subspace of X^{**} . So, Z must be isometrically isomorphic to \overline{X} .

- 8. Defn: An *extreme point* of a convex set S is a point $z \in S$ such that z cannot be expressed as a nontrivial convex combination of distinct poins of S; here, non-trivial means that the λ in the convex combination is in (0, 1)
 - (a) Show that a vector space isomorphism $T: X \to Y$ preserves the following:
 - i. convex sets i.e., A is convex iff T(A) is convex
 - ii. extreme points of a convex set, i.e., if E(A) denotes the set of extreme points of A, then T(E(A)) = E(T(A))
 - (b) Show that if T is an isometric isomorphism, then it preserves the closed unit ball, i.e., the T-image of the closed unit ball of X is the closed unit ball of Y.
 - (c) Show that the closed unit ball in an NVS is convex.
 - (d) Find the extreme points of the closed unit balls in c_0 , the Banash space of sequences that converge to 0, and in c, the Banach space of all convergent sequences.
 - (e) Are c and c_0 isometrically isomorphic? Why or why not?

Solution:

a.

i. Since T is invertible, it suffices to show that if T(A) is convex then A is convex. This follows from linearity:

Let $x, y \in A$ and $\lambda \in [0, 1]$ and

$$u = \lambda x + (1 - \lambda)y$$

Since T is linear,

$$T(u) = \lambda T(x) + (1 - \lambda)T(y)$$

Since $T(x), T(y) \in T(A)$ which is convex, $T(u) \in T(A)$. Since T is invertible and T^{-1} is linear, $u \in A$. So A is convex.

ii. This follows from linearity and defn of extreme points.

Let v be an extreme point of T(A) and $u = T^{-1}(v) \in A$.

If u were not an extreme point of A, then there would exist distinct $x, y \in A$ and $\lambda \in (0, 1)$ s.t. $u = \lambda x + (1 - \lambda)y$. By linearity of T,

$$v = T(u) = \lambda T(x) + (1 - \lambda)T(y)$$

which is a non-trivial linear combination of distinct points in T(A), a contradiction. So, $E(T(A)) \subseteq T(E(A))$. But then replacing T by T^{-1} and A by T(A) we get

$$E(A) = E(T^{-1}(T(A))) \subseteq T^{-1}(E(T(A)))$$

. Apply T to this inclusion, we get $T(E(A)) \subseteq E(T(A))$.

b.. This follows immediately from the fact that an isometric isomorphism is norm-preserving.

c. Let x and y be in the closed unit ball. Then for any convex combination we have:

$$||\lambda x + (1 - \lambda y)| \le ||\lambda x|| + ||(1 - \lambda y)| = \lambda ||||x|| + (1 - \lambda)||y|| \le 1.$$

d. Let e_n denote the *n*-th canonical basis vector in \mathbb{R}^{∞} :

$$e_n = (0, 0, 0, \dots, 0, 0, 0, 1, 0, 0, 0, \dots).$$

Suppose that x belongs to the closed unit ball of c and for some n, $|x_n| < 1$, then for sufficiently small $\epsilon > 0$, both $x_{\pm,\epsilon} = x \pm \epsilon e_n$ belong to the unit ball of c. Moreover, x is the average of these points:

$$x = (1/2)(x_{+,\epsilon} + (x_{-,\epsilon}));$$

thus such an x is not an extreme point of the unit ball in c.

For the exact same reason, if x belongs to the closed unit ball of c_0 and for some n, $|x_n| < 1$, then such an x is not an extreme point of the unit ball in c_0 .

It follows that the only extreme points of the closed unit balls of either c_0 or c are those x s.t. for all n, $|x_n| = 1$. Thus, the set of extreme points of the closed unit ball of c_0 is empty.

For the space c, each of these sequences is extreme because if such an x is a non-trivial convex combination of two distinct sequences, then for at least one of those sequences, call it y, and some n, $|y_n| > 1$ and thus is not in the unit ball. So, the set of extreme points of the closed unit ball of c is the set of sequences x s.t. for all $n |x_n| = 1$ and

for all sufficiently large n, the sequence is 1 or for all sufficiently large n, the sequence is -1.

e. No. By Parts a, b and c, an isometric isomorphism would map the extreme points of the unit ball of c to the extreme points of c_0 . But, by part d, the former is non-empty and the latter is empty.