Math 421/510 Homework 3: Due on Friday, Feb. 16, 11AM

1. Let pu be Lebesgue measure on [0, 1].
(a) Show that if f,g € C([0,1]) and f = g p-a.e., then f = g, and thus for any
1 <p < oo, C([0,1]) may be regarded as a subspace of LP([0, 1], u).
(b) Show that the sup norm and L' norm on C/([0, 1]) are not equivalent.

(c) Are the sup norm and L*> norm on C([0,1]) equivalent?

Solution:

a. If f = g p-a.e., then they must agree on at least point in every subinteral and so
they agree on a dense set. . Since they are both continuous, they are equal.

b. For f(z) =1 —nx on [0,1/n] and 0 elsewhere, ||f||ssp = 1,||f][1 = 1/2n and so

—”ﬁ}'ﬁ‘ip = 2n can be arbitrarily large.

Alternatively note that w.r.t. the sup norm C([0, 1]) is complete but w.r.t the L' norm
is not complete.

c. Yes. We claim that the sup and essential sup of a continuous function are equal. To
see this, observe that for any y < sup f, f~!(y, 00) is nonempty and open and thus con-
tains a non-empty open interval and thus has positive measure. Thus, sup f < ess sup f.
But always ess sup f < sup f.

2. A metric space is separable if it contains a countable dense subset.

Show that any separable Banach space is isometrically isomorphic to a closed subspace
of /.

Hint: Apply Theorem 5.8b to the elements of the countable dense subset.

Solution: Let X be a separable Banach space and {z,} a countable dense subset.. By
the Hahn-Banach Theorem (see Theorem 5.8b), for each n, there is a linear functional

fa st |[fall =1 and fo(zy) = [[2a]]-
Let
U(z) = (filz), f2(2),...)

WU is linear since each f; is linear.
It suffices to show that ¥ is a BLT with ||U(z)|| = ||z| for all z € X.

|9[| < 1:

1V ()| = sup || fu(2)]] < sup |[ful] [|2]] = ||]]
So U is a BLT with | V] < 1.
U preserves the norm:

Fix v € X. Let {z,,} C {z,} be a sequence converging to x. For each i we have



) = 19| = 1| oy (@a )| = ]| 50 |9l = ]l We have shown that
is bounded, hence continuous, and the norm is continuous, therefore

ol > 1 ¥()]| = lim |9 () =zl

| = lim ||z,
1—00

which yields the desired norm-preserving structure.

V¥ is injective since it preserves the norm, hence it preserves nonzero elements. So, VU is
a linear norm-preserving map and thus is a bijection onto its image which is contained
in (>,

Since isometric isomorphisms preserve completeness, the image is complete and there-
fore closed.

. Let X be aset and let T" be the set of all topologies on X, partially ordered by inclusion.
Recall that an element a of a partially ordered set (poset) is mazimal if a < b implies
a = b. Similarly, a is minimal if b < a implies a = b.

(a) Show that 7" has a unique maximal element and a unique minimal element. Iden-
tify these elements. 7 € T s.t. T < 7; and unique maximal element. Identify
this element in terms of 7; and 7s.

(b) Given any collection £ of subsets of X, let T¢ denote the set of all elements of
T that contain £. Order Tg by inclusion. Show that 7T¢ has a unique minimal
element. Identify this element in terms of £.

(c) Let R C T. Let Tx denote the collection of all topologies 7 € T' s.t. T C R for
all R € R. Order Ty by inclusion. Show that Tk has a unique maximal element.
Identify this element in terms of R.

(d) If R =T are the answers to part b and ¢ the same?

Solution:

a. The discrete topology T = P(X), the set of all subsets, is maximal because clearly
if T <8, then S = T. Similarly, the trivial topology T = {0, X'} is a minimal element.
Since P(X) > S for any topology S, it is the unique maximal element. Similarly, the
trivial topology T = {0, X'} is the unique minimal element.

For parts b and c, first note that the intersection of any collection of topologies is a
topology.

b. Let T be the intersection of all elements of Tg. T, is a topology and belongs to
Te. If T € Te, then T C T . So, if T C Tmin, then T = Toin. So, Tmin 1S @ minimal
element.

And if 7 is a minimal element of T, then since T C 7, we have T = Tpin, and so
Trnin is the unique minimal element.

c. Let Tnax be the intersection of all elements of R. Then T,.. is a topology and
belongs to Tg. If T € Tg, then T C Thax. S0, if Thax C T, then T = Tax, and so T

1s a maximal element.



If T € Tx is maximal, then since 7 C Thax, T = Tmax- 50, Rmax is the unique maximal
element of R.

d. Yes. They are both the intersection of all elements of T¢.

. Defn: For a vector space X, a convexr combination of x,y € X is a point of the form
tz+ (1 —t)y such that ¢ € [0,1]. A subset S of a NVS X is conver if whenever z,y € S
then every convex combination of x,y is in S.

Let C be a convex set in a real normed vector space X and assume that 0 € interior(C'),
i.e., for some € > 0, B.(0) C C. For z € X let
= inf A
Pl = o A >0
(a) Show that p(z) is a sublinear functional.

(b) Give an example of a proper convex set C' in R? s.t. p(x) is a semi-norm but not
a norm.

(c) Give an example of a proper convex set C'in R? s.t. p(z) is a semilinear functional
but not a semi-norm.

Solution:
a. p(x) is called the Minkowski functional.

First observe that for all x, p(z) is finite: if x = 0, then € AC for all A > 0 and so
p(0) = 0; if = # 0, then, since for some € > 0, B.(0) C C, we have (¢/2)z/||z|| € C
and so p(z) < 2||x||/e.

Next observe that for all A > p(x), € AC: there exists X s.t. A > N > p(x) and
x € NC; then z = Ne for some ¢ € C; then x = A(XN'/A)c and (N /\)c € C since it is a
convex combination of ¢ and 0: (X' /A)ec = (N/A)c+ (1 — (N/X))0; so z € AC.

positive homogeneity: Let g > 0. Then x € AC iff ux € pAC and so A > p(x) iff
pA > p(pa), and so p(ux) = pp().

subadditivity: Let z,y € X. Given ¢ > 0, choose p(z) < A < p(x) + €, ply) < p <
p(y) + e Then z/X\, y/p € C and so by convexity

r+y=(A+p)

A
e C ey

(/) € (A+p)C

Thus,
ple+y) A+ p < p(r) +ply) +2€
Since this holds for all € > 0, we have p(z + y) < p(x) + p(y).

For b and ¢, note that p(z) is a semi-norm iff it is symmetric around the origin, i.e.,
x € C iff —z € O for a sublinear functional is a semi-norm iff for all z, p(—z) = p(z).

b. Let C' be the horizontal strip R x [—1,1]. Then for all  p(z,0) = 0. So, p is not a
norm. But it is a semi-norm because it is symmetric around the origin.

c. Let C be a convex set which contains a nbhd. of the origin and is not symmetric
around the origin. Specific example: the open unit disk shifted up by 1/2. Then

p((0,3/4) = 1/2, but p(0,—3/4) = 3/2 and so p(—(0,3/4)) # p(0,3/4).
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5. Show that R™ and C", with each endowed by the Euclidean metric, are reflexive Banach
spaces

Solution: It suffices to show that (R")* = R™ and (C")* = C".

We do the case of R™; C" is similar.

For y € R", let L, be the linear functional on R™ defined by L,(x) = x - y. Then by
finite-dimensional Cauchy Schwartz, L, is a BLF with norm at most ||y||; but in fact,
the norm is exactly ||y|| because

n

Ly(y) =Y () = (Ilyl])?

=1

Define:
U:R"— (R")",y— L,

Then V¥ is linear:
Layiv-(z) =z - (ay + b2) = ax -y + br - 2 = aL,(x) + bL,(x)

And norm-preserving, therefore injective, since ||L,|| = ||y||.
Suffices to show that U is surjective. Let ¢ € (R™)*.

Find y e R" st. L, = ¢.

Let y; = ¢(e'). Then

P(x) = in¢(€i) = Zl’zyz = Ly(ﬂﬁ)-

Alternative solution: appeal to the result proven in class that (LP)* = L9.

6. Show that ¢ = ¢!, more precisely that there is an isometric isomorphism from ¢! onto
i (here, ¢g has the sup norm and ¢! has the ¢! norm).

Solution: For @ € ¢! and T € ¢y, define
%(f) = Z a;T;,
i
a convergent series. And

|6a(7)| < Z Jai| || < (Z la])(sup |:]) = [[[alle, |1

Since ¢g is clearly linear, ¢5 € ¢ and ||¢]| < |[alle, -

On the other hand, letting €” be the n-th canonical basis vector and



=" sgn(a;)e’, which is in the unit sphere of g, we get

8

[¢a(@)] = |l
i=1

and so for all n,

sup [6a(T)] = Y ||
i=1

=[|z]|=1
and so ]| = [[all,
Thus, @ — ¢z is a linear norm-preserving, and therefore injective, mapping from ¢*
into cj.
It remains to show that @ — ¢; is surjective.
So let ¢ € ¢f. and a,, = ¢(€"). Let

a= (CLl,CLQ,...)

We claim that @ € ¢! and ¢z = ¢ (surjectivity then follows). Then by linearity for all
n’

D lail = o@) < lgll |1Z"]] = [I¢]]
i=1

Thus, @ € /1.
Clearly ¢ and ¢4 agree on c¢., which is dense in ¢y. Since both ¢ and ¢ are continuous

on ¢y they must agree on cy.

(a) Let X be an NVS. Suppose that Y; and Y, are Banach spaces and there are
isometric isomorphisms ®; and ®; from X into Y; and Y; whose images are dense
in Y] and Ys.

Show that Y7 and Y5 are isometrically isomorphic.

(b) Why is the closure of the image of the canonical embedding X — X™*, z >
isometrically isomorphic to (X, || - ||5) (from problem 7 in HW1 and HW2)?

Solution:

a. By HW2 #7, there is an isometric isomorphism from X to a dense subspace of X.
By transitivity of isometric isomorphism it suffices to show that if there is an isometric
isomorphism of X to a dense subspace of a Banach space Z, then Z is isometrically
isomorphic to X.

We may assume that X is itself a dense subpsace of Z. For 2z € Z let {z,(2)} be a
sequence which converges to z. Then z,(z) is Cauchy. Thus, [{z,(2)}] € X. Define

U:7Z 35X

by
VU(2) = ({za(2)}])
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We claim that U is an isometric isomorphism of Z onto X.
Verify the following:

Well-defined: If x/, is another sequence which converges to z, then lim,, o x,(2) — ! =

0 and so lim,, e ||z, (2) — 20| = 0 and so [{z/,}] = [{zn(2)}]. !
Linear: Let z,2’ € Z. Then lim, o z,(2) + x,(2) = 2z 4+ 2’ and so lim,, oo (z,(2) +
n(2')) — zn(2 + 2') = 0 and thus

{2n(2)] + {2 (2)}] = {zn(2) + 20 ()} = [{an(z + 2}

Norm-preserving (and thus injective):

[{zn (I = lim [lzn(2)]] = [|=]]

Surjective: Let [{z,}] € X. Then {z,} is Cauchy in X and therefore converges to
some z € Z since Z is complete. Then [{z,}| = [{z.(2)}] and so

U(z) = {zn(2)}] = {an}]

b. The image of X via the canonical embedding is dense in its closure Z which is a
Banach subspace of X**. So, Z must be isometrically isomorphic to X.

. Defn: An extreme point of a convex set S is a point z € S such that z cannot be
expressed as a nontrivial convex combination of distinct poins of S; here, non-trivial
means that the A in the convex combination is in (0, 1)

(a) Show that a vector space isomorphism T : X — Y preserves the following:

i. convex sets i.e., A is convex iff T'(A) is convex

ii. extreme points of a convex set, i.e., if F'(A) denotes the set of extreme points
of A, then T(E(A)) = E(T(A))

(b) Show that if 7" is an isometric isomorphism, then it preserves the closed unit ball,
i.e., the T-image of the closed unit ball of X is the closed unit ball of Y.

(c) Show that the closed unit ball in an NVS is convex.

(d) Find the extreme points of the closed unit balls in ¢y, the Banash space of se-
quences that converge to 0, and in ¢, the Banach space of all convergent sequences.

(e) Are c and ¢ isometrically isomorphic? Why or why not?

Solution:
a.

i. Since T is invertible, it suffices to show that if T'(A) is convex then A is convex.
This follows from linearity:

Let z,y € A and A € [0,1] and

u=Ar+(1-Ny
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Since T is linear,

T(u) =AT(z)+ (1 = N)T(y)
Since T'(z),T(y) € T(A) which is convex, T'(u) € T(A). Since T is invertible and 7!
is linear, u € A. So A is convex.
ii. This follows from linearity and defn of extreme points.
Let v be an extreme point of T(A) and u =T~ (v) € A.
If u were not an extreme point of A, then there would exist distinct z,y € A and
A€ (0,1) s.t. u=Ax+ (1 — N)y. By linearity of T,

v="T(u) =\T(x)+ (1 —-NT(y)

which is a non-trivial linear combination of distinct points in T'(A), a contradiction.

So, E(T(A)) C T(E(A)). But then replacing T by T~ ! and A by T(A) we get
E(A) = E(T™Y(T(A))) € T~H(E(T(A))

. Apply T to this inclusion, we get T'(E(A)) C E(T(A)).

b.. This follows immediately from the fact that an isometric isomorphism is norm-
preserving.

c. Let x and y be in the closed unit ball. Then for any convex combination we have:

1Az + (1= Xy[| < [[Az]] + [I(T = Ayl = Alll]][ + (1 = Mlly[| < 1.

d. Let e,, denote the n-th canonical basis vector in R*°:
e, =(0,0,0,...,0,0,0,1,0,0,0,...).

Suppose that = belongs to the closed unit ball of ¢ and for some n, |z,| < 1, then for
sufficiently small € > 0, both x1 . = = £ €e,, belong to the unit ball of c. Moreover, x
is the average of these points:

z=(1/2)(xsc+ (2_0));

thus such an z is not an extreme point of the unit ball in c.

For the exact same reason, if  belongs to the closed unit ball of ¢y and for some n,
|z,| < 1, then such an z is not an extreme point of the unit ball in ¢.

It follows that the only extreme points of the closed unit balls of either c¢q or ¢ are
those x s.t. for all n, |z,| = 1. Thus, the set of extreme points of the closed unit ball
of ¢q is empty.

For the space ¢, each of these sequences is extreme because if such an x is a non-trivial
convex combination of two distinct sequences, then for at least one of those sequences,
call it y, and some n, |y,| > 1 and thus is not in the unit ball. So, the set of extreme
points of the closed unit ball of ¢ is the set of sequences x s.t. for all n |x,| = 1 and
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for all sufficiently large n, the sequence is 1 or for all sufficiently large n, the sequence
is —1.

e. No. By Parts a, b and ¢, an isometric isomorphism would map the extreme points of
the unit ball of ¢ to the extreme points of ¢y. But, by part d, the former is non-empty
and the latter is empty.



