
Math 421/510 Homework 3: Due on Friday, Feb. 16, 11AM

1. Let µ be Lebesgue measure on [0, 1].

(a) Show that if f, g ∈ C([0, 1]) and f = g µ-a.e., then f = g, and thus for any
1 ≤ p ≤ ∞, C([0, 1]) may be regarded as a subspace of Lp([0, 1], µ).

(b) Show that the sup norm and L1 norm on C([0, 1]) are not equivalent.

(c) Are the sup norm and L∞ norm on C([0, 1]) equivalent?

Solution:

a. If f = g µ-a.e., then they must agree on at least point in every subinteral and so
they agree on a dense set. . Since they are both continuous, they are equal.

b. For f(x) = 1 − nx on [0, 1/n] and 0 elsewhere, ||f ||sup = 1, ||f ||1 = 1/2n and so
||f ||sup
||f ||1 = 2n can be arbitrarily large.

Alternatively note that w.r.t. the sup norm C([0, 1]) is complete but w.r.t the L1 norm
is not complete.

c. Yes. We claim that the sup and essential sup of a continuous function are equal. To
see this, observe that for any y < sup f , f−1(y,∞) is nonempty and open and thus con-
tains a non-empty open interval and thus has positive measure. Thus, sup f ≤ ess sup f .
But always ess sup f ≤ sup f .

2. A metric space is separable if it contains a countable dense subset.

Show that any separable Banach space is isometrically isomorphic to a closed subspace
of `∞.

Hint: Apply Theorem 5.8b to the elements of the countable dense subset.

Solution: Let X be a separable Banach space and {xn} a countable dense subset.. By
the Hahn-Banach Theorem (see Theorem 5.8b), for each n, there is a linear functional
fn s.t. ||fn|| = 1 and fn(xn) = ||xn||.
Let

Ψ(x) = (f1(x), f2(x), ...)

Ψ is linear since each fi is linear.

It suffices to show that Ψ is a BLT with ‖Ψ(x)‖ = ‖x‖ for all x ∈ X.

||Ψ|| ≤ 1:
||Ψ(x)|| = sup

n
||fn(x)|| ≤ sup

n
||fn|| ||x|| = ||x||

So Ψ is a BLT with ‖Ψ‖ ≤ 1.

Ψ preserves the norm:

Fix x ∈ X. Let {xni
} ⊂ {xn} be a sequence converging to x. For each i we have
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‖xni
‖ ≥ ‖Ψ(xni

)‖ ≥ ‖fni
(xni

)‖ = ‖xni
‖ so ‖Ψ(xni

)‖ = ‖xni
‖. We have shown that Ψ

is bounded, hence continuous, and the norm is continuous, therefore

‖x‖ ≥ ‖Ψ(x)‖ = lim
i→∞
‖Ψ(xni

)‖ = lim
i→∞
‖xni
‖ = ‖x‖,

which yields the desired norm-preserving structure.

Ψ is injective since it preserves the norm, hence it preserves nonzero elements. So, Ψ is
a linear norm-preserving map and thus is a bijection onto its image which is contained
in `∞.

Since isometric isomorphisms preserve completeness, the image is complete and there-
fore closed.

3. Let X be a set and let T be the set of all topologies on X, partially ordered by inclusion.
Recall that an element a of a partially ordered set (poset) is maximal if a ≤ b implies
a = b. Similarly, a is minimal if b ≤ a implies a = b.

(a) Show that T has a unique maximal element and a unique minimal element. Iden-
tify these elements. T ∈ T s.t. T ≤ T1 and unique maximal element. Identify
this element in terms of T1 and T2.

(b) Given any collection E of subsets of X, let TE denote the set of all elements of
T that contain E . Order TE by inclusion. Show that TE has a unique minimal
element. Identify this element in terms of E .

(c) Let R ⊂ T . Let TR denote the collection of all topologies T ∈ T s.t. T ⊂ R for
all R ∈ R. Order TR by inclusion. Show that TR has a unique maximal element.
Identify this element in terms of R.

(d) If R = TE are the answers to part b and c the same?

Solution:

a. The discrete topology T = P (X), the set of all subsets, is maximal because clearly
if T ≤ S, then S = T . Similarly, the trivial topology T = {∅, X} is a minimal element.
Since P (X) ≥ S for any topology S, it is the unique maximal element. Similarly, the
trivial topology T = {∅, X} is the unique minimal element.

For parts b and c, first note that the intersection of any collection of topologies is a
topology.

b. Let Tmin be the intersection of all elements of TE . Tmin is a topology and belongs to
TE . If T ∈ TE , then Tmin ⊂ T . So, if T ⊂ Tmin, then T = Tmin. So, Tmin is a minimal
element.

And if T is a minimal element of TE , then since Tmin ⊂ T , we have T = Tmin, and so
Tmin is the unique minimal element.

c. Let Tmax be the intersection of all elements of R. Then Tmax is a topology and
belongs to TR. If T ∈ TR, then T ⊂ Tmax. So, if Tmax ⊂ T , then T = Tmax, and so T
is a maximal element.
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If T ∈ TR is maximal, then since T ⊂ Tmax, T = Tmax. So, Rmax is the unique maximal
element of R.

d. Yes. They are both the intersection of all elements of TE .

4. Defn: For a vector space X, a convex combination of x, y ∈ X is a point of the form
tx+ (1− t)y such that t ∈ [0, 1]. A subset S of a NVS X is convex if whenever x, y ∈ S
then every convex combination of x, y is in S.

Let C be a convex set in a real normed vector spaceX and assume that 0 ∈ interior(C),
i.e., for some ε > 0, Bε(0) ⊂ C. For x ∈ X, let

p(x) = inf
x∈λC

λ > 0

(a) Show that p(x) is a sublinear functional.

(b) Give an example of a proper convex set C in R2 s.t. p(x) is a semi-norm but not
a norm.

(c) Give an example of a proper convex set C in R2 s.t. p(x) is a semilinear functional
but not a semi-norm.

Solution:

a. p(x) is called the Minkowski functional.

First observe that for all x, p(x) is finite: if x = 0, then x ∈ λC for all λ > 0 and so
p(0) = 0; if x 6= 0, then, since for some ε > 0, Bε(0) ⊂ C, we have (ε/2)x/||x|| ∈ C
and so p(x) ≤ 2||x||/ε.
Next observe that for all λ > p(x), x ∈ λC: there exists λ′ s.t. λ > λ′ ≥ p(x) and
x ∈ λ′C; then x = λ′c for some c ∈ C; then x = λ(λ′/λ)c and (λ′/λ)c ∈ C since it is a
convex combination of c and 0: (λ′/λ)c = (λ′/λ)c+ (1− (λ′/λ))0; so x ∈ λC.

positive homogeneity: Let µ > 0. Then x ∈ λC iff µx ∈ µλC and so λ > p(x) iff
µλ > p(µx), and so p(µx) = µp(x).

subadditivity: Let x, y ∈ X. Given ε > 0, choose p(x) < λ < p(x) + ε, p(y) < µ <
p(y) + ε. Then x/λ, y/µ ∈ C and so by convexity

x+ y = (λ+ µ)(
λ

λ+ µ
(x/λ) +

µ

λ+ µ
(x/µ)) ∈ (λ+ µ)C

Thus,
p(x+ y) ≤ λ+ µ ≤ p(x) + p(y) + 2ε

Since this holds for all ε > 0, we have p(x+ y) ≤ p(x) + p(y).

For b and c, note that p(x) is a semi-norm iff it is symmetric around the origin, i.e.,
x ∈ C iff −x ∈ C; for a sublinear functional is a semi-norm iff for all x, p(−x) = p(x).

b. Let C be the horizontal strip R× [−1, 1]. Then for all x p(x, 0) = 0. So, p is not a
norm. But it is a semi-norm because it is symmetric around the origin.

c. Let C be a convex set which contains a nbhd. of the origin and is not symmetric
around the origin. Specific example: the open unit disk shifted up by 1/2. Then
p((0, 3/4) = 1/2, but p(0,−3/4) = 3/2 and so p(−(0, 3/4)) 6= p(0, 3/4).
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5. Show that Rn and Cn, with each endowed by the Euclidean metric, are reflexive Banach
spaces

Solution: It suffices to show that (Rn)∗ = Rn and (Cn)∗ = Cn.

We do the case of Rn; Cn is similar.

For y ∈ Rn, let Ly be the linear functional on Rn defined by Ly(x) = x · y. Then by
finite-dimensional Cauchy Schwartz, Ly is a BLF with norm at most ||y||; but in fact,
the norm is exactly ||y|| because

Ly(y) =
n∑
i=1

(yi)
2 = (||y||)2

Define:
Ψ : Rn → (Rn)∗, y 7→ Ly

Then Ψ is linear:

Lay+bz(x) = x · (ay + bz) = ax · y + bx · z = aLy(x) + bLz(x)

And norm-preserving, therefore injective, since ||Ly|| = ||y||.
Suffices to show that Ψ is surjective. Let φ ∈ (Rn)∗.

Find y ∈ Rn s.t. Ly = φ.

Let yi = φ(ei). Then

φ(x) =
∑
i

xiφ(ei) =
∑
i

xiyi = Ly(x).

Alternative solution: appeal to the result proven in class that (Lp)∗ = Lq.

6. Show that c∗0 = `1, more precisely that there is an isometric isomorphism from `1 onto
c∗0 (here, c0 has the sup norm and `1 has the `1 norm).

Solution: For a ∈ `1 and x ∈ c0, define

φa(x) =
∑
i

aixi,

a convergent series. And

|φa(x)| ≤
∑
i

|ai| |xi| ≤ (
∑
i

|ai|)(sup
i
|xi|) = |||a||`1||x||

Since φa is clearly linear, φa ∈ c∗0 and ||φ|| ≤ ||a||`1 .
On the other hand, letting en be the n-th canonical basis vector and
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xn =
∑n

i=1 sgn(ai)e
i, which is in the unit sphere of c0, we get

|φa(xn)| =
n∑
i=1

|ai|

and so for all n,

sup
x:||x||=1

|φa(x)| ≥
n∑
i=1

|ai|

and so ||φ|| = ||a||`1 .
Thus, a 7→ φa is a linear norm-preserving, and therefore injective, mapping from `1

into c∗0.

It remains to show that a 7→ φa is surjective.

So let φ ∈ c∗0. and an = φ(en). Let

a = (a1, a2, . . .)

We claim that a ∈ `1 and φa = φ (surjectivity then follows). Then by linearity for all
n,

n∑
i=1

|ai| = φ(xn) ≤ ||φ|| ||xn|| = ||φ||

Thus, a ∈ `1.
Clearly φ and φa agree on cc, which is dense in c0. Since both φ and φa are continuous
on c0 they must agree on c0.

7. (a) Let X be an NVS. Suppose that Y1 and Y2 are Banach spaces and there are
isometric isomorphisms Φ1 and Φ2 from X into Y1 and Y2 whose images are dense
in Y1 and Y2.

Show that Y1 and Y2 are isometrically isomorphic.

(b) Why is the closure of the image of the canonical embedding X → X∗∗, x 7→ x̂
isometrically isomorphic to (X, || · ||X) (from problem 7 in HW1 and HW2)?

Solution:

a. By HW2 #7, there is an isometric isomorphism from X to a dense subspace of X.
By transitivity of isometric isomorphism it suffices to show that if there is an isometric
isomorphism of X to a dense subspace of a Banach space Z, then Z is isometrically
isomorphic to X.

We may assume that X is itself a dense subpsace of Z. For z ∈ Z let {xn(z)} be a
sequence which converges to z. Then xn(z) is Cauchy. Thus, [{xn(z)}] ∈ X. Define

Ψ : Z → X

by
Ψ(z) = ([{xn(z)}])

5



We claim that Ψ is an isometric isomorphism of Z onto X.

Verify the following:

Well-defined: If x′n is another sequence which converges to z, then limn→∞ xn(z)−x′n =
0 and so limn→∞ ||xn(z)− x′n|| = 0 and so [{x′n}] = [{xn(z)}].
Linear: Let z, z′ ∈ Z. Then limn→∞ xn(z) + xn(z′) = z + z′ and so limn→∞(xn(z) +
xn(z′))− xn(z + z′) = 0 and thus

[{xn(z)] + [{xn(z′)}] = [{xn(z) + xn(z′)}] = [{xn(z + z′)}].

Norm-preserving (and thus injective):

||[{xn(z)}]|| = lim
n→∞

||xn(z)|| = ||z||

Surjective: Let [{xn}] ∈ X. Then {xn} is Cauchy in X and therefore converges to
some z ∈ Z since Z is complete. Then [{xn}] = [{xn(z)}] and so

Ψ(z) = [{xn(z)}] = [{xn}]

b. The image of X via the canonical embedding is dense in its closure Z which is a
Banach subspace of X∗∗. So, Z must be isometrically isomorphic to X.

8. Defn: An extreme point of a convex set S is a point z ∈ S such that z cannot be
expressed as a nontrivial convex combination of distinct poins of S; here, non-trivial
means that the λ in the convex combination is in (0, 1)

(a) Show that a vector space isomorphism T : X → Y preserves the following:

i. convex sets i.e., A is convex iff T (A) is convex

ii. extreme points of a convex set, i.e., if E(A) denotes the set of extreme points
of A, then T (E(A)) = E(T (A))

(b) Show that if T is an isometric isomorphism, then it preserves the closed unit ball,
i.e., the T -image of the closed unit ball of X is the closed unit ball of Y .

(c) Show that the closed unit ball in an NVS is convex.

(d) Find the extreme points of the closed unit balls in c0, the Banash space of se-
quences that converge to 0, and in c, the Banach space of all convergent sequences.

(e) Are c and c0 isometrically isomorphic? Why or why not?

Solution:

a.

i. Since T is invertible, it suffices to show that if T (A) is convex then A is convex.
This follows from linearity:

Let x, y ∈ A and λ ∈ [0, 1] and

u = λx+ (1− λ)y
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Since T is linear,
T (u) = λT (x) + (1− λ)T (y)

Since T (x), T (y) ∈ T (A) which is convex, T (u) ∈ T (A). Since T is invertible and T−1

is linear, u ∈ A. So A is convex.

ii. This follows from linearity and defn of extreme points.

Let v be an extreme point of T (A) and u = T−1(v) ∈ A.

If u were not an extreme point of A, then there would exist distinct x, y ∈ A and
λ ∈ (0, 1) s.t. u = λx+ (1− λ)y. By linearity of T ,

v = T (u) = λT (x) + (1− λ)T (y)

which is a non-trivial linear combination of distinct points in T (A), a contradiction.

So, E(T (A)) ⊆ T (E(A)). But then replacing T by T−1 and A by T (A) we get

E(A) = E(T−1(T (A))) ⊆ T−1(E(T (A))

. Apply T to this inclusion, we get T (E(A)) ⊆ E(T (A)).

b.. This follows immediately from the fact that an isometric isomorphism is norm-
preserving.

c. Let x and y be in the closed unit ball. Then for any convex combination we have:

||λx+ (1− λy|| ≤ ||λx||+ ||(1− λy|| = λ||||x||+ (1− λ)||y|| ≤ 1.

d. Let en denote the n-th canonical basis vector in R∞:

en = (0, 0, 0, . . . , 0, 0, 0, 1, 0, 0, 0, . . .).

Suppose that x belongs to the closed unit ball of c and for some n, |xn| < 1, then for
sufficiently small ε > 0, both x±,ε = x ± εen belong to the unit ball of c. Moreover, x
is the average of these points:

x = (1/2)(x+,ε + (x−,ε));

thus such an x is not an extreme point of the unit ball in c.

For the exact same reason, if x belongs to the closed unit ball of c0 and for some n,
|xn| < 1, then such an x is not an extreme point of the unit ball in c0.

It follows that the only extreme points of the closed unit balls of either c0 or c are
those x s.t. for all n, |xn| = 1. Thus, the set of extreme points of the closed unit ball
of c0 is empty.

For the space c, each of these sequences is extreme because if such an x is a non-trivial
convex combination of two distinct sequences, then for at least one of those sequences,
call it y, and some n, |yn| > 1 and thus is not in the unit ball. So, the set of extreme
points of the closed unit ball of c is the set of sequences x s.t. for all n |xn| = 1 and
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for all sufficiently large n, the sequence is 1 or for all sufficiently large n, the sequence
is −1.

e. No. By Parts a, b and c, an isometric isomorphism would map the extreme points of
the unit ball of c to the extreme points of c0. But, by part d, the former is non-empty
and the latter is empty.
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