Math 421/510 Homework 3: Due on Friday, Feb. 16, 11AM

1. Let μ be Lebesgue measure on $[0,1]$.
(a) Show that if $f, g \in C([0,1])$ and $f=g \mu$-a.e., then $f=g$, and thus for any $1 \leq p \leq \infty, C([0,1])$ may be regarded as a subspace of $L^{p}([0,1], \mu)$.
(b) Show that the sup norm and L^{1} norm on $C([0,1])$ are not equivalent.
(c) Are the sup norm and L^{∞} norm on $C([0,1])$ equivalent?

Solution:
a. If $f=g \mu$-a.e., then they must agree on at least point in every subinteral and so they agree on a dense set. . Since they are both continuous, they are equal.
b. For $f(x)=1-n x$ on $[0,1 / n]$ and 0 elsewhere, $\|f\|_{\text {sup }}=1,\|f\|_{1}=1 / 2 n$ and so $\frac{\|f\|_{\text {sup }}}{\|f\|_{1}}=2 n$ can be arbitrarily large.
Alternatively note that w.r.t. the sup norm $C([0,1])$ is complete but w.r.t the L^{1} norm is not complete.
c. Yes. We claim that the sup and essential sup of a continuous function are equal. To see this, observe that for any $y<\sup f, f^{-1}(y, \infty)$ is nonempty and open and thus contains a non-empty open interval and thus has positive measure. Thus, $\sup f \leq \operatorname{ess} \sup f$. But always ess $\sup f \leq \sup f$.
2. A metric space is separable if it contains a countable dense subset.

Show that any separable Banach space is isometrically isomorphic to a closed subspace of ℓ^{∞}.
Hint: Apply Theorem 5.8b to the elements of the countable dense subset.
Solution: Let X be a separable Banach space and $\left\{x_{n}\right\}$ a countable dense subset.. By the Hahn-Banach Theorem (see Theorem 5.8b), for each n, there is a linear functional f_{n} s.t. $\left\|f_{n}\right\|=1$ and $f_{n}\left(x_{n}\right)=\left\|x_{n}\right\|$.
Let

$$
\Psi(x)=\left(f_{1}(x), f_{2}(x), \ldots\right)
$$

Ψ is linear since each f_{i} is linear.
It suffices to show that Ψ is a BLT with $\|\Psi(x)\|=\|x\|$ for all $x \in X$.
$\|\Psi\| \leq 1:$

$$
\|\Psi(x)\|=\sup _{n}\left\|f_{n}(x)\right\| \leq \sup _{n}\left\|f_{n}\right\|\|x\|=\|x\|
$$

So Ψ is a BLT with $\|\Psi\| \leq 1$.
Ψ preserves the norm:
Fix $x \in X$. Let $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ be a sequence converging to x. For each i we have
$\left\|x_{n_{i}}\right\| \geq\left\|\Psi\left(x_{n_{i}}\right)\right\| \geq\left\|f_{n_{i}}\left(x_{n_{i}}\right)\right\|=\left\|x_{n_{i}}\right\|$ so $\left\|\Psi\left(x_{n_{i}}\right)\right\|=\left\|x_{n_{i}}\right\|$. We have shown that Ψ is bounded, hence continuous, and the norm is continuous, therefore

$$
\|x\| \geq\|\Psi(x)\|=\lim _{i \rightarrow \infty}\left\|\Psi\left(x_{n_{i}}\right)\right\|=\lim _{i \rightarrow \infty}\left\|x_{n_{i}}\right\|=\|x\|
$$

which yields the desired norm-preserving structure.
Ψ is injective since it preserves the norm, hence it preserves nonzero elements. So, Ψ is a linear norm-preserving map and thus is a bijection onto its image which is contained in ℓ^{∞}.

Since isometric isomorphisms preserve completeness, the image is complete and therefore closed.
3. Let X be a set and let T be the set of all topologies on X, partially ordered by inclusion. Recall that an element a of a partially ordered set (poset) is maximal if $a \leq b$ implies $a=b$. Similarly, a is minimal if $b \leq a$ implies $a=b$.
(a) Show that T has a unique maximal element and a unique minimal element. Identify these elements. $\mathcal{T} \in T$ s.t. $\mathcal{T} \leq \mathcal{T}_{1}$ and unique maximal element. Identify this element in terms of \mathcal{T}_{1} and \mathcal{T}_{2}.
(b) Given any collection \mathcal{E} of subsets of X, let $T_{\mathcal{E}}$ denote the set of all elements of T that contain \mathcal{E}. Order $T_{\mathcal{E}}$ by inclusion. Show that $T_{\mathcal{E}}$ has a unique minimal element. Identify this element in terms of \mathcal{E}.
(c) Let $R \subset T$. Let T_{R} denote the collection of all topologies $\mathcal{T} \in T$ s.t. $\mathcal{T} \subset \mathcal{R}$ for all $\mathcal{R} \in R$. Order T_{R} by inclusion. Show that T_{R} has a unique maximal element. Identify this element in terms of R.
(d) If $R=T_{\mathcal{E}}$ are the answers to part b and c the same?

Solution:
a. The discrete topology $\mathcal{T}=P(X)$, the set of all subsets, is maximal because clearly if $\mathcal{T} \leq \mathcal{S}$, then $\mathcal{S}=\mathcal{T}$. Similarly, the trivial topology $\mathcal{T}=\{\emptyset, X\}$ is a minimal element. Since $P(X) \geq \mathcal{S}$ for any topology \mathcal{S}, it is the unique maximal element. Similarly, the trivial topology $\mathcal{T}=\{\emptyset, X\}$ is the unique minimal element.

For parts b and c, first note that the intersection of any collection of topologies is a topology.
b. Let $\mathcal{T}_{\text {min }}$ be the intersection of all elements of $T_{\mathcal{E}} . \mathcal{T}_{\text {min }}$ is a topology and belongs to $T_{\mathcal{E}}$. If $\mathcal{T} \in T_{\mathcal{E}}$, then $\mathcal{T}_{\min } \subset \mathcal{T}$. So, if $\mathcal{T} \subset \mathcal{T}_{\text {min }}$, then $\mathcal{T}=\mathcal{T}_{\text {min }}$. So, $\mathcal{T}_{\text {min }}$ is a minimal element.
And if \mathcal{T} is a minimal element of $T_{\mathcal{E}}$, then since $\mathcal{T}_{\text {min }} \subset \mathcal{T}$, we have $\mathcal{T}=\mathcal{T}_{\text {min }}$, and so $\mathcal{T}_{\text {min }}$ is the unique minimal element.
c. Let $\mathcal{T}_{\max }$ be the intersection of all elements of R. Then $\mathcal{T}_{\max }$ is a topology and belongs to T_{R}. If $\mathcal{T} \in T_{R}$, then $\mathcal{T} \subset \mathcal{T}_{\text {max }}$. So, if $\mathcal{T}_{\text {max }} \subset \mathcal{T}$, then $\mathcal{T}=\mathcal{T}_{\text {max }}$, and so \mathcal{T} is a maximal element.

If $\mathcal{T} \in T_{R}$ is maximal, then since $\mathcal{T} \subset \mathcal{T}_{\text {max }}, \mathcal{T}=\mathcal{T}_{\text {max }}$. So, $\mathcal{R}_{\text {max }}$ is the unique maximal element of R.
d. Yes. They are both the intersection of all elements of $T_{\mathcal{E}}$.
4. Defn: For a vector space X, a convex combination of $x, y \in X$ is a point of the form $t x+(1-t) y$ such that $t \in[0,1]$. A subset S of a NVS X is convex if whenever $x, y \in S$ then every convex combination of x, y is in S.
Let C be a convex set in a real normed vector space X and assume that $0 \in \operatorname{interior}(C)$, i.e., for some $\epsilon>0, B_{\epsilon}(0) \subset C$. For $x \in X$, let

$$
p(x)=\inf _{x \in \lambda C} \lambda>0
$$

(a) Show that $p(x)$ is a sublinear functional.
(b) Give an example of a proper convex set C in \mathbb{R}^{2} s.t. $p(x)$ is a semi-norm but not a norm.
(c) Give an example of a proper convex set C in \mathbb{R}^{2} s.t. $p(x)$ is a semilinear functional but not a semi-norm.

Solution:
a. $p(x)$ is called the Minkowski functional.

First observe that for all $x, p(x)$ is finite: if $x=0$, then $x \in \lambda C$ for all $\lambda>0$ and so $p(0)=0$; if $x \neq 0$, then, since for some $\epsilon>0, B_{\epsilon}(0) \subset C$, we have $(\epsilon / 2) x /\|x\| \in C$ and so $p(x) \leq 2\|x\| / \epsilon$.
Next observe that for all $\lambda>p(x), x \in \lambda C$: there exists λ^{\prime} s.t. $\lambda>\lambda^{\prime} \geq p(x)$ and $x \in \lambda^{\prime} C$; then $x=\lambda^{\prime} c$ for some $c \in C$; then $x=\lambda\left(\lambda^{\prime} / \lambda\right) c$ and $\left(\lambda^{\prime} / \lambda\right) c \in C$ since it is a convex combination of c and $0:\left(\lambda^{\prime} / \lambda\right) c=\left(\lambda^{\prime} / \lambda\right) c+\left(1-\left(\lambda^{\prime} / \lambda\right)\right) 0$; so $x \in \lambda C$.
positive homogeneity: Let $\mu>0$. Then $x \in \lambda C$ iff $\mu x \in \mu \lambda C$ and so $\lambda>p(x)$ iff $\mu \lambda>p(\mu x)$, and so $p(\mu x)=\mu p(x)$.
subadditivity: Let $x, y \in X$. Given $\epsilon>0$, choose $p(x)<\lambda<p(x)+\epsilon, p(y)<\mu<$ $p(y)+\epsilon$. Then $x / \lambda, y / \mu \in C$ and so by convexity

$$
x+y=(\lambda+\mu)\left(\frac{\lambda}{\lambda+\mu}(x / \lambda)+\frac{\mu}{\lambda+\mu}(x / \mu)\right) \in(\lambda+\mu) C
$$

Thus,

$$
p(x+y) \leq \lambda+\mu \leq p(x)+p(y)+2 \epsilon
$$

Since this holds for all $\epsilon>0$, we have $p(x+y) \leq p(x)+p(y)$.
For b and c , note that $p(x)$ is a semi-norm iff it is symmetric around the origin, i.e., $x \in C$ iff $-x \in C$; for a sublinear functional is a semi-norm iff for all $x, p(-x)=p(x)$.
b. Let C be the horizontal strip $\mathbb{R} \times[-1,1]$. Then for all $x p(x, 0)=0$. So, p is not a norm. But it is a semi-norm because it is symmetric around the origin.
c. Let C be a convex set which contains a nbhd. of the origin and is not symmetric around the origin. Specific example: the open unit disk shifted up by $1 / 2$. Then $p((0,3 / 4)=1 / 2$, but $p(0,-3 / 4)=3 / 2$ and so $p(-(0,3 / 4)) \neq p(0,3 / 4)$.
5. Show that \mathbb{R}^{n} and \mathbb{C}^{n}, with each endowed by the Euclidean metric, are reflexive Banach spaces
Solution: It suffices to show that $\left(\mathbb{R}^{n}\right)^{*}=\mathbb{R}^{n}$ and $\left(\mathbb{C}^{n}\right)^{*}=\mathbb{C}^{n}$.
We do the case of $\mathbb{R}^{n} ; \mathbb{C}^{n}$ is similar.
For $y \in \mathbb{R}^{n}$, let L_{y} be the linear functional on \mathbb{R}^{n} defined by $L_{y}(x)=x \cdot y$. Then by finite-dimensional Cauchy Schwartz, L_{y} is a BLF with norm at most $\|y\|$; but in fact, the norm is exactly $\|y\|$ because

$$
L_{y}(y)=\sum_{i=1}^{n}\left(y_{i}\right)^{2}=(\|y\|)^{2}
$$

Define:

$$
\Psi: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{n}\right)^{*}, y \mapsto L_{y}
$$

Then Ψ is linear:

$$
L_{a y+b z}(x)=x \cdot(a y+b z)=a x \cdot y+b x \cdot z=a L_{y}(x)+b L_{z}(x)
$$

And norm-preserving, therefore injective, since $\left\|L_{y}\right\|=\|y\|$.
Suffices to show that Ψ is surjective. Let $\phi \in\left(\mathbb{R}^{n}\right)^{*}$.
Find $y \in \mathbb{R}^{n}$ s.t. $L_{y}=\phi$.
Let $y_{i}=\phi\left(e^{i}\right)$. Then

$$
\phi(x)=\sum_{i} x_{i} \phi\left(e_{i}\right)=\sum_{i} x_{i} y_{i}=L_{y}(x) .
$$

Alternative solution: appeal to the result proven in class that $\left(L^{p}\right)^{*}=L^{q}$.
6. Show that $c_{0}^{*}=\ell^{1}$, more precisely that there is an isometric isomorphism from ℓ^{1} onto c_{0}^{*} (here, c_{0} has the sup norm and ℓ^{1} has the ℓ^{1} norm).
Solution: For $\bar{a} \in \ell^{1}$ and $\bar{x} \in c_{0}$, define

$$
\phi_{\bar{a}}(\bar{x})=\sum_{i} a_{i} x_{i},
$$

a convergent series. And

$$
\left|\phi_{\bar{a}}(\bar{x})\right| \leq \sum_{i}\left|a_{i}\right|\left|x_{i}\right| \leq\left(\sum_{i}\left|a_{i}\right|\right)\left(\sup _{i}\left|x_{i}\right|\right)=\left\|\left|\left|\bar{a}\left\|_{\ell_{1}}| | \bar{x}\right\|\right.\right.\right.
$$

Since $\phi_{\bar{a}}$ is clearly linear, $\phi_{\bar{a}} \in c_{0}^{*}$ and $\|\phi\| \leq\|\bar{a}\|_{\ell_{1}}$.
On the other hand, letting \bar{e}^{n} be the n-th canonical basis vector and
$\bar{x}^{n}=\sum_{i=1}^{n} \operatorname{sgn}\left(a_{i}\right) \bar{e}^{i}$, which is in the unit sphere of c_{0}, we get

$$
\left|\phi_{\bar{a}}\left(\bar{x}^{n}\right)\right|=\sum_{i=1}^{n}\left|a_{i}\right|
$$

and so for all n,

$$
\sup _{\bar{x}:||\bar{x}|=1}\left|\phi_{\bar{a}}(\bar{x})\right| \geq \sum_{i=1}^{n}\left|a_{i}\right|
$$

and so $\|\phi\|=\|\bar{a}\|_{\ell_{1}}$.
Thus, $\bar{a} \mapsto \phi_{\bar{a}}$ is a linear norm-preserving, and therefore injective, mapping from ℓ^{1} into c_{0}^{*}.
It remains to show that $\bar{a} \mapsto \phi_{\bar{a}}$ is surjective.
So let $\phi \in c_{0}^{*}$. and $a_{n}=\phi\left(\bar{e}^{n}\right)$. Let

$$
\bar{a}=\left(a_{1}, a_{2}, \ldots\right)
$$

We claim that $\bar{a} \in \ell^{1}$ and $\phi_{\bar{a}}=\phi$ (surjectivity then follows). Then by linearity for all n,

$$
\sum_{i=1}^{n}\left|a_{i}\right|=\phi\left(\bar{x}^{n}\right) \leq\|\phi\|\left\|\bar{x}^{n}\right\|=\|\phi\|
$$

Thus, $\bar{a} \in \ell^{1}$.
Clearly ϕ and $\phi_{\bar{a}}$ agree on c_{c}, which is dense in c_{0}. Since both ϕ and $\phi_{\bar{a}}$ are continuous on c_{0} they must agree on c_{0}.
7. (a) Let X be an NVS. Suppose that Y_{1} and Y_{2} are Banach spaces and there are isometric isomorphisms Φ_{1} and Φ_{2} from X into Y_{1} and Y_{2} whose images are dense in Y_{1} and Y_{2}.
Show that Y_{1} and Y_{2} are isometrically isomorphic.
(b) Why is the closure of the image of the canonical embedding $X \rightarrow X^{* *}, x \mapsto \hat{x}$ isometrically isomorphic to $\left(\bar{X},\|\cdot\| \|_{\bar{X}}\right)$ (from problem 7 in HW1 and HW2)?
Solution:
a. By HW2 \#7, there is an isometric isomorphism from X to a dense subspace of \bar{X}. By transitivity of isometric isomorphism it suffices to show that if there is an isometric isomorphism of X to a dense subspace of a Banach space Z, then Z is isometrically isomorphic to \bar{X}.

We may assume that X is itself a dense subpsace of Z. For $z \in Z$ let $\left\{x_{n}(z)\right\}$ be a sequence which converges to z. Then $x_{n}(z)$ is Cauchy. Thus, $\left[\left\{x_{n}(z)\right\}\right] \in \bar{X}$. Define

$$
\Psi: Z \rightarrow \bar{X}
$$

by

$$
\Psi(z)=\left(\left[\left\{x_{n}(z)\right\}\right]\right)
$$

We claim that Ψ is an isometric isomorphism of Z onto \bar{X}.
Verify the following:
Well-defined: If x_{n}^{\prime} is another sequence which converges to z, then $\lim _{n \rightarrow \infty} x_{n}(z)-x_{n}^{\prime}=$ 0 and so $\lim _{n \rightarrow \infty}\left\|x_{n}(z)-x_{n}^{\prime}\right\|=0$ and so $\left[\left\{x_{n}^{\prime}\right\}\right]=\left[\left\{x_{n}(z)\right\}\right]$.
Linear: Let $z, z^{\prime} \in Z$. Then $\lim _{n \rightarrow \infty} x_{n}(z)+x_{n}\left(z^{\prime}\right)=z+z^{\prime}$ and so $\lim _{n \rightarrow \infty}\left(x_{n}(z)+\right.$ $\left.x_{n}\left(z^{\prime}\right)\right)-x_{n}\left(z+z^{\prime}\right)=0$ and thus

$$
\left[\left\{x_{n}(z)\right]+\left[\left\{x_{n}\left(z^{\prime}\right)\right\}\right]=\left[\left\{x_{n}(z)+x_{n}\left(z^{\prime}\right)\right\}\right]=\left[\left\{x_{n}\left(z+z^{\prime}\right)\right\}\right] .\right.
$$

Norm-preserving (and thus injective):

$$
\left\|\left[\left\{x_{n}(z)\right\}\right]\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}(z)\right\|=\|z\|
$$

Surjective: Let $\left[\left\{x_{n}\right\}\right] \in \bar{X}$. Then $\left\{x_{n}\right\}$ is Cauchy in X and therefore converges to some $z \in Z$ since Z is complete. Then $\left[\left\{x_{n}\right\}\right]=\left[\left\{x_{n}(z)\right\}\right]$ and so

$$
\Psi(z)=\left[\left\{x_{n}(z)\right\}\right]=\left[\left\{x_{n}\right\}\right]
$$

b. The image of X via the canonical embedding is dense in its closure Z which is a Banach subspace of $X^{* *}$. So, Z must be isometrically isomorphic to \bar{X}.
8. Defn: An extreme point of a convex set S is a point $z \in S$ such that z cannot be expressed as a nontrivial convex combination of distinct poins of S; here, non-trivial means that the λ in the convex combination is in $(0,1)$
(a) Show that a vector space isomorphism $T: X \rightarrow Y$ preserves the following:
i. convex sets i.e., A is convex iff $T(A)$ is convex
ii. extreme points of a convex set, i.e., if $E(A)$ denotes the set of extreme points of A, then $T(E(A))=E(T(A))$
(b) Show that if T is an isometric isomorphism, then it preserves the closed unit ball, i.e., the T-image of the closed unit ball of X is the closed unit ball of Y.
(c) Show that the closed unit ball in an NVS is convex.
(d) Find the extreme points of the closed unit balls in c_{0}, the Banash space of sequences that converge to 0 , and in c, the Banach space of all convergent sequences.
(e) Are c and c_{0} isometrically isomorphic? Why or why not?

Solution:
a.
i. Since T is invertible, it suffices to show that if $T(A)$ is convex then A is convex. This follows from linearity:
Let $x, y \in A$ and $\lambda \in[0,1]$ and

$$
u=\lambda x+(1-\lambda) y
$$

Since T is linear,

$$
T(u)=\lambda T(x)+(1-\lambda) T(y)
$$

Since $T(x), T(y) \in T(A)$ which is convex, $T(u) \in T(A)$. Since T is invertible and T^{-1} is linear, $u \in A$. So A is convex.
ii. This follows from linearity and defn of extreme points.

Let v be an extreme point of $T(A)$ and $u=T^{-1}(v) \in A$.
If u were not an extreme point of A, then there would exist distinct $x, y \in A$ and $\lambda \in(0,1)$ s.t. $u=\lambda x+(1-\lambda) y$. By linearity of T,

$$
v=T(u)=\lambda T(x)+(1-\lambda) T(y)
$$

which is a non-trivial linear combination of distinct points in $T(A)$, a contradiction. So, $E(T(A)) \subseteq T(E(A))$. But then replacing T by T^{-1} and A by $T(A)$ we get

$$
E(A)=E\left(T^{-1}(T(A))\right) \subseteq T^{-1}(E(T(A))
$$

. Apply T to this inclusion, we get $T(E(A)) \subseteq E(T(A))$.
b.. This follows immediately from the fact that an isometric isomorphism is normpreserving.
c. Let x and y be in the closed unit ball. Then for any convex combination we have:

$$
\| \lambda x+(1-\lambda y\|\leq\| \lambda x\|+\|(1-\lambda y\|=\lambda \mid\| x\|+(1-\lambda)\| y \| \leq 1 .
$$

d. Let e_{n} denote the n-th canonical basis vector in \mathbb{R}^{∞} :

$$
e_{n}=(0,0,0, \ldots, 0,0,0,1,0,0,0, \ldots) .
$$

Suppose that x belongs to the closed unit ball of c and for some $n,\left|x_{n}\right|<1$, then for sufficiently small $\epsilon>0$, both $x_{ \pm, \epsilon}=x \pm \epsilon e_{n}$ belong to the unit ball of c. Moreover, x is the average of these points:

$$
x=(1 / 2)\left(x_{+, \epsilon}+\left(x_{-, \epsilon}\right)\right) ;
$$

thus such an x is not an extreme point of the unit ball in c.
For the exact same reason, if x belongs to the closed unit ball of c_{0} and for some n, $\left|x_{n}\right|<1$, then such an x is not an extreme point of the unit ball in c_{0}.
It follows that the only extreme points of the closed unit balls of either c_{0} or c are those x s.t. for all $n,\left|x_{n}\right|=1$. Thus, the set of extreme points of the closed unit ball of c_{0} is empty.
For the space c, each of these sequences is extreme because if such an x is a non-trivial convex combination of two distinct sequences, then for at least one of those sequences, call it y, and some $n,\left|y_{n}\right|>1$ and thus is not in the unit ball. So, the set of extreme points of the closed unit ball of c is the set of sequences x s.t. for all $n\left|x_{n}\right|=1$ and
for all sufficiently large n, the sequence is 1 or for all sufficiently large n, the sequence is -1 .
e. No. By Parts a, b and c, an isometric isomorphism would map the extreme points of the unit ball of c to the extreme points of c_{0}. But, by part d, the former is non-empty and the latter is empty.

