Math 421/510 Homework 3: Due on Friday, Feb. 15, 11AM

1. Let μ be Lebesgue measure on $[0, 1]$.
 (a) Show that if $f, g \in C([0, 1])$ and $f = g \mu$-a.e., then $f = g$, and thus for any $1 \leq p \leq \infty$, $C([0, 1])$ may be regarded as a subspace of $L^p([0, 1], \mu)$.
 (b) Show that the sup norm and L^1 norm on $C([0, 1])$ are not equivalent.
 (c) Are the sup norm and L^∞ norm on $C([0, 1])$ equivalent?

2. A metric space is separable if it contains a countable dense subset.
 Show that any separable Banach space is isometrically isomorphic to a closed subspace of ℓ^∞.
 Hint: Apply Theorem 5.8b to the elements of the countable dense subset.

3. Let X be a set and let T be the set of all topologies on X, partially ordered by inclusion.
 Recall that an element a of a partially ordered set (poset) is maximal if $a \leq b$ implies $a = b$. Similarly, a is minimal if $b \leq a$ implies $a = b$.
 (a) Show that T has a unique maximal element and a unique minimal element. Identify these elements.
 (b) Given any collection \mathcal{E} of subsets of X, let $T_\mathcal{E}$ denote the set of all elements of T that contain \mathcal{E}. Order $T_\mathcal{E}$ by inclusion. Show that $T_\mathcal{E}$ has a unique minimal element. Identify this element in terms of \mathcal{E}.
 (c) Let $R \subset T$. Let F_R denote the collection of all topologies $\mathcal{T} \in T$ s.t. $\mathcal{T} \subset \mathcal{R}$ for all $\mathcal{R} \in R$. Order F_R by inclusion. Show that F_R has a unique maximal element. Identify this element in terms of R.
 (d) If $R = T_\mathcal{E}$ are the answers to part b and c the same?

4. Defn: For a vector space X, a convex combination of $x, y \in X$ is a point of the form $tx + (1 - t)y$ such that $t \in [0, 1]$. A subset S of X is convex if whenever $x, y \in S$ then every convex combination of x, y is in S.
 Let C be a convex set in a real NVS X and assume that $0 \in \text{interior}(C)$, i.e., for some $\epsilon > 0$, $B_\epsilon(0) \subset C$. For $x \in X$, let
 $$p(x) = \inf_{x \in \lambda C} \lambda > 0$$
 (a) Show that $p(x)$ is a sublinear functional.
 (b) Give an example of a proper convex set C in \mathbb{R}^2 s.t. $p(x)$ is a semi-norm but not a norm.
 (c) Give an example of a proper convex set C in \mathbb{R}^2 s.t. $p(x)$ is a semilinear functional but not a semi-norm.
5. Show that \(\mathbb{R}^n \) and \(\mathbb{C}^n \), with each endowed by the Euclidean metric, are reflexive Banach spaces.

6. Show that \(c_0^* = \ell^1 \), more precisely that there is an isometric isomorphism from \(\ell^1 \) onto \(c_0^* \) (here, \(c_0 \) has the sup norm and \(\ell^1 \) has the \(\ell^1 \) norm).

7. (a) Let \(X \) be an NVS. Suppose that \(Y_1 \) and \(Y_2 \) are Banach spaces and there are isometric isomorphisms \(\Phi_1 \) and \(\Phi_2 \) from \(X \) into \(Y_1 \) and \(Y_2 \) whose images are dense in \(Y_1 \) and \(Y_2 \).

Show that \(Y_1 \) and \(Y_2 \) are isometrically isomorphic.

(b) Why is the closure of the image of the canonical embedding \(X \to X^{**}, x \mapsto \hat{x} \) isometrically isomorphic to \((\overline{X}, \| \cdot \|_{\overline{X}}) \) (from problem 7 in HW1 and HW2)?

8. Defn: An extreme point of a convex set \(S \) is a point \(z \in S \) such that \(z \) cannot be expressed as a nontrivial convex combination of distinct points of \(S \); here, non-trivial means that the \(\lambda \) in the convex combination is in \((0, 1)\)

(a) Show that a vector space isomorphism \(T : X \to Y \) preserves the following:

i. convex sets i.e., \(A \) is convex iff \(T(A) \) is convex

ii. extreme points of a convex set, i.e., if \(E(A) \) denotes the set of extreme points of \(A \), then \(T(E(A)) = E(T(A)) \)

(b) Show that if \(T \) is an isometric isomorphism, then it preserves the closed unit ball, i.e., the \(T \)-image of the closed unit ball of \(X \) is the closed unit ball of \(Y \).

(c) Show that the closed unit ball in an NVS is convex.

(d) Find the extreme points of the closed unit balls in \(c_0 \), the Banach space of sequences that converge to 0, and in \(c \), the Banach space of all convergent sequences.

(e) Are \(c \) and \(c_0 \) isometrically isomorphic? Why or why not?