Math 421/510 Homework 3: Due on Friday, Feb. 15, 11AM

- 1. Let μ be Lebesgue measure on [0, 1].
 - (a) Show that if $f, g \in C([0, 1])$ and $f = g \mu$ -a.e., then f = g, and thus for any $1 \leq p \leq \infty$, C([0, 1]) may be regarded as a subspace of $L^p([0, 1], \mu)$.
 - (b) Show that the sup norm and L^1 norm on C([0,1]) are not equivalent.
 - (c) Are the sup norm and L^{∞} norm on C([0, 1]) equivalent?
- 2. A metric space is *separable* if it contains a countable dense subset.

Show that any separable Banach space is isometrically isomorphic to a closed subspace of ℓ^{∞} .

Hint: Apply Theorem 5.8b to the elements of the countable dense subset.

- 3. Let X be a set and let T be the set of all topologies on X, partially ordered by inclusion. Recall that an element a of a partially ordered set (poset) is maximal if $a \leq b$ implies a = b. Similarly, a is minimal if $b \leq a$ implies a = b.
 - (a) Show that T has a unique maximal element and a unique minimal element. Identify these elements.
 - (b) Given any collection \mathcal{E} of subsets of X, let $T_{\mathcal{E}}$ denote the set of all elements of T that contain \mathcal{E} . Order $T_{\mathcal{E}}$ by inclusion. Show that $T_{\mathcal{E}}$ has a unique minimal element. Identify this element in terms of \mathcal{E} .
 - (c) Let $R \subset T$. Let F_R denote the collection of all topologies $\mathcal{T} \in T$ s.t. $\mathcal{T} \subset \mathcal{R}$ for all $\mathcal{R} \in R$. Order F_R by inclusion. Show that F_R has a unique maximal element. Identify this element in terms of R.
 - (d) If $R = T_{\mathcal{E}}$ are the answers to part b and c the same?
- 4. Defn: For a vector space X, a convex combination of $x, y \in X$ is a point of the form tx + (1-t)y such that $t \in [0, 1]$. A subset S of X is convex if whenever $x, y \in S$ then every convex combination of x, y is in S.

Let C be a convex set in a real NVS X and assume that $0 \in \operatorname{interior}(C)$, i.e., for some $\epsilon > 0, B_{\epsilon}(0) \subset C$. For $x \in X$, let

$$p(x) = \inf_{x \in \lambda C} \ \lambda > 0$$

- (a) Show that p(x) is a sublinear functional.
- (b) Give an example of a proper convex subset C in \mathbb{R}^2 s.t. p(x) is a semi-norm but not a norm.
- (c) Give an example of a proper convex subset C in \mathbb{R}^2 s.t. p(x) is a sublinear functional but not a semi-norm.

- 5. Show that \mathbb{R}^n and \mathbb{C}^n , with each endowed by the Euclidean metric, are reflexive Banach spaces
- 6. Show that $c_0^* = \ell^1$, more precisely that there is an isometric isomorphism from ℓ^1 onto c_0^* (here, c_0 has the sup norm and ℓ^1 has the ℓ^1 norm).
- 7. (a) Let X be an NVS. Suppose that Y₁ and Y₂ are Banach spaces and there are isometric isomorphisms Φ₁ and Φ₂ from X into Y₁ and Y₂ whose images are dense in Y₁ and Y₂.

Show that Y_1 and Y_2 are isometrically isomorphic.

- (b) Why is the closure of the image of the canonical embedding $X \to X^{**}$, $x \mapsto \hat{x}$ isometrically isomorphic to $(\overline{X}, || \cdot ||_{\overline{X}})$ (from problem 7 in HW1 and HW2)?
- 8. Defn: An *extreme point* of a convex set S is a point $z \in S$ such that z cannot be expressed as a nontrivial convex combination of distinct poins of S; here, non-trivial means that the λ in the convex combination is in (0, 1)
 - (a) Show that a vector space isomorphism $T: X \to Y$ preserves the following:
 - i. convex sets i.e., A is convex iff T(A) is convex
 - ii. extreme points of a convex set, i.e., if E(A) denotes the set of extreme points of A, then T(E(A)) = E(T(A))
 - (b) Show that if T is an isometric isomorphism, then it preserves the closed unit ball, i.e., the T-image of the closed unit ball of X is the closed unit ball of Y.
 - (c) Show that the closed unit ball in an NVS is convex.
 - (d) Find the extreme points of the closed unit balls in c_0 , the Banash space of sequences that converge to 0, and in c, the Banach space of all convergent sequences.
 - (e) Are c and c_0 isometrically isomorphic? Why or why not?