
Math 421/510, Homework 2, due Friday, Feb. 1, 11AM

1. Let L∞ = L∞((X,µ);R), for some measure space (X,µ), with the essential sup norm
|| · ||∞. For g ∈ L∞, define T : L∞ → L∞ by T (f) = fg. Show that T is well-defined,
a BLT and ||T || = ||g||∞
Solution: First note that T is well-defined, i.e., if f1 = f2 a.e. and g1 = g2 a.e., then
f1g1 = f2g2 a.e.

Clearly T is linear.

We may assume that sup |g| = ||g||∞. For any f ∈ L∞, we may assume that sup |f | =
||f ||∞. Then

||Tf ||∞ = ||fg||∞ ≤ sup |fg| ≤ (sup |f |)(sup |g|) = ||f ||∞ ||g||∞

Thus ||T || ≤ ||g||∞. But for f = 1, the constant function,

||Tf ||∞ = ||g||∞ = ||g||∞ ||f ||∞

So, T is a BLT and ||T || = ||g||∞

2. (a) Show that if T is a BLT from an NVS (X, || · ||1) to (Y || · ||2), || · ||1 is equivalent
to || · ||3 and || · ||2 is equivalent to || · ||4, then T is a BLT from (X, || · ||3) to
(X, || · ||4).

(b) Show that any linear transformation from a finite-dimensional NVS to any NVS
is a BLT.

Solution:

a. Let ||T ||12 denote the norm of T with respect norms 1 and 2, and ||T ||34 with respect
to norms 3 and 4.

For some C,K > 0,

||Tx||4 ≤ C||Tx||2 ≤ C||T ||12 ||x||1 ≤ CK||T ||12 ||x||3

Thus T is a BLT wrt norms 3 and 4 with ||T34|| ≤ CK|T ||12.
b. By part a, we may assume that the finite-dimensional NVS is Rn with the `1 norm.
Any x ∈ X may be expressed x =

∑
i aiei. Let M = max ||T (ei)||. Then,

||T (x)|| ≤
∑
i

|ai| ||T (ei)|| ≤M ||x||

and so T is a BLT with ||T || ≤M .

3. Let T : X → Y be a linear transformation from one vector space X to another Y .
Assume that each of X and Y are endowed with norms and so may be considered an
NVS. Show that the following are equivalent.

(a) T is a BLT
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(b) The image of every bounded set is bounded.

(c) For some open set U , containing 0, in X, T (U) is bounded in Y .

Solution:

a implies b: Any bounded set B in X is contained in a closed ball, of some radius K,
centered at 0. Since for all x ∈ B, ||Tx|| ≤ ||T || ||x||, we have ||Tx|| ≤ K||T ||. Thus
the image of B is contained in the closed ball of radius ||T ||K, a bounded set.

b implies c: The open unit ball U contains 0 and is clearly bounded. Thus, given b,
its image is bounded.

c implies a: Since any open set is a union of open balls, U contains an open ball B
containing 0. But then B must contain a closed ball, Bδ(0), centered at 0. Since T (U)
is bounded, T (Bδ(0)) is bounded and thus must be contained in BK(0) for some K.

So, if x ∈ X and x 6= 0, then ||T (δx/||x||)|| ≤ K and so ||T (x)|| ≤ (K/δ)||x|| and so T
is a BLT with ||T || ≤ K/δ.

4. A homeomorphic isomorphism from one NVS X to another Y is a vector space iso-
morphism that is also a homeomorphism. We say that X and Y are homeomorphically
isomorphic (which is sometimes just called an isomorphism in functional analysis) if
there is a homeomorphic isomorphism from X to Y .

(a) Show that homeomorphic isomorphism is an equivalence relation.

(b) Show that a vector space isomorphism is a homeomorphic isomorphism iff it and
its inverse are BLTs.

(c) Show that if X and Y are homeomorphically isomorphic, then X is a Banach
space iff Y is.

(d) Let X = Y = cc, the set of sequences that are eventually 0, considered as NVS
with the sup norm. Let T : X → Y be defined by

T ({x1, x2, x3, . . . , }) = {x1, x2/2, x3/3, . . .}

Show that T is linear, bijective, continuous, and has a linear inverse but that T
is not a homeomorphic isomorphism.

(later on, we will see that the open mapping theorem implies that this can’t
happen when X and Y are Banach spaces).

Solution:

a.

i. Reflexivity: the identity is both a vector space isomorphism and a homeomorphism.

ii. Symmetry: the inverse of a vector isomorphism is a vector isomorphism and the
inverse of a homeomorphism is a homeomorphism.

iii. Transitivity: the composition of vector space isomorphisms is a vector space iso-
morphism and the composition of homeomorphisms is a homeomorphism.
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b. Continuity of a linear transformation is equivalent to BLT.

c. If T is a BLT, then for all x, ||Tx|| ≤ ||T || ||x|| and so T maps Cauchy sequences
to Cauchy sequences and convergent sequences to convergent sequences. So, if T is
homeomorphic isomorphism, then X is Banach iff Y is.

d. T is clearly linear. It is continuous because it is a BLT:

||Tx|| = sup
n:xn 6=0

|xn/n| ≤ sup
n:xn 6=0

|xn| = ||x||

and so ||T || ≤ 1 (in fact, ||T || = 1).

It has a linear inverse:

T−1({y1, y2, y3, . . .}) = {y1, 2y2, 3y3, . . .}

and in particular is biejctive.

But its inverse is not continuous because it is not a BLT:

Let en = (0, . . . , 0, 1, 0, 0, . . .), i.e., a 1 in position n and 0’s in the other positions.

Then ||T−1(en)||
||en|| = n and so ||T−1|| =∞.

5. (a) Let c denote the set of convergent sequences with the sup norm. Show that c is
a Banach space.

(b) Show that c and c0 are homeomorphically isomorphic

Solution:

a. We claim that c is a closed subspace of the Banach space `∞ and is thus a Banach
space. It is clearly a subspace. To see that it is closed, let xn ∈ c converge to x ∈ `∞,
i.e. xn = {xnm} converges to x = {xm} uniformly. Then for all ε > 0, there exists N
s.t for all n ≥ N and all m

|xnm − xm| < ε

Since xN is convergent, it is Cauchy and so there exists M s.t. for all m1,m2 ≥M

|xNm1
− xNm2

| < ε

Thus, by the triangle inequality

|xm1 − xm2| ≤ |xm1 − xNm1
|+ |xNm1

− xNm2
|+ |xNm2

− xm2| < 3ε

Thus x is Cauchy and thus converges.

b. For each x ∈ c, let `(x) = limn xn. Define Φ : c→ c0 by

Φ(x) = (`(x), x1 − `(x), x2 − `(x), . . . , xn − `(x), . . .).

Φ(x) ∈ c0 because lim(xn − `(x)) = 0.
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Φ is clearly linear. It is surjective because given y ∈ c0, letting

x = (y1, y2 + y1, y3 + y1, . . .), (1)

we have limn xn = limn yn + y1 = y1, and so x ∈ c, and

Φ(x) = (y1, x2 − y1, x3 − y1, . . .) = (y1, y2, y3, . . .) = y.

It is injective because if Φ(x) = Φ(x′), then L := limn xn = limn x
′
n and so each

xn − L = x′n − L and so each xn = x′n.

So, Φ is a bijective linear mapping and so it is a vector space isomorphism.

It is a BLT because
||Φ(x)|| = max(|`(x)|, sup

n
|`(x)− xn|)

≤ max(sup
n
|xn|, 2 sup

n
|xn|) ≤ 2 sup

n
|xn| = 2||x||

Finally, its inverse is a BLT:

Φ−1(y) = (y1, y2 + y1, y3 + y1, . . .)

and so
||Φ−1(y)|| = max(|y1|, sup

n
|yn+1 + y1|) ≤ |y1|+ sup

n
|yn| ≤ 2||y||

6. An isometric isomorphism from one NVS X to another Y is a bijective norm-preserving
(i.e for all x, ||Tx|| = ||x||) vector space isomorphism. If there exists such a map we
say that X and Y are isometrically isomorphic.

(a) Show that isometric isomorphism is an equivalence relation on normed vector
spaces.

(b) Show that a vector space isomorphism is an isometric isomorphism iff it and its
inverse are BLTs with norm = 1.

(c) Show that isometric isomorphism implies homeomorphic isomorphism.

(d) Let X be the space of analytic functions on the open unit disk D which extend to
continuous functions on the closed unit disk D. Let Y be the space of continuous
functions on the unit circle which extend to continuous functions on D which are
analytic on D (both X and Y considered as NVS with the sup norm).

Show that X and Y are Banach spaces and are isometrically isomorphic.

Solution:

a. Of course, vector space isomorphism is an equivalence relation.

Clearly the identity is norm preserving, the inverse of a norm preserving map is norm
preserving and the composition of two norm preserving maps is norm preserving. So
isometric isomorphism is an equivalence relation.

4



b. (If part) since ||T || = 1, for all x, ||Tx|| ≤ ||x||; since ||T−1|| = 1, for all y, ||T−1y|| ≤
||y|| and so replacing T−1y with x and y with Tx, we get for all x, ||x|| ≤ ||Tx|| and
so ||Tx|| = ||x||. Thus, T is an isometric isomorphism.

(Only if part) Immediate.

c. This follows immediately from problems 4b and 6b.

d. Because uniform limits of analytic functions are analytic and uniform limits of
continuous functions are continuous, X is a closed subspace of the bounded complex-
valued functions on D and thus is a Banach space.

Define T : X → Y by Tf = f |S. The map T is clearly linear and is bijective by
definition. It is injective by the Cauchy integral formula from complex analysis: by
continuity, any complex integral around the boundary, S1 is uniformly approximable
by a complex integral around the circle of radius 1 − ε. By the maximum modulus
principle in complex analysis, T is norm-preserving. Thus, X and Y are isometrically
isomorphic and thus Y is also a Banach space by problems 4c and 6c.

7. Continuation of problem 7 of HW1:

d Show that (X, || · ||X) is complete.

Hint: A Cauchy sequence in X is a sequence xm = [{xmn }] ∈ X s.t.

lim
m1,m2→∞

lim
n→∞

||xm1
n − xm2

n || = 0 as m1,m2 →∞.

Find the limit of the Cauchy sequence by a diagonal argument: ym = xmkm where
km is chosen appropriately.

e Show that the map h : X → X, defined by x 7→ [(x, x, x, . . .)] is an isometric
isomorphism onto its image which is dense in X.

f Show that h is onto iff (X, || · ||) is a Banach space.

Solution:

d. Let [xm] be a Cauchy sequence in X. For fixed m, xm = {xmn } is a Cauchy sequence
in X and so there exists km s.t. if n1, n2 ≥ km, then

||xmn1
− xmn2

|| < 1/m.

We claim that the sequence y = {ym} is Cauchy in X. Let ε > 0. Choose M > 0 s.t.
1/M < ε and if m1,m2 ≥M , then

lim
j→∞
||xm1

j − x
m2
j || < ε

Fix m1,m2 ≥M , Then choose J ≥ km1 , km2 s.t. if j ≥ J , then ||xm1
j −x

m2
j || < ε. Then

||ym1 − ym2|| = ||xm1
km1
− xm2

km2
||

≤ ||xm1
km1
− xm1

J ||+ ||x
m1
J − x

m2
J ||+ ||x

m2
J − x

m2
km2
||
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< 1/m1 + ε+ 1/m2 < 3ε,

So, y is Cauchy.

Finally, we claim that [{xn}] converges to [y].

||[xn]− [y]|| = lim
j→∞
||xnj − yj|| ≤ lim sup

j→∞
||xnj − xnkn||+ lim sup

j→∞
||yn − yj||

By defn. of kn the first term is at most 1/n and the second term is small for large n
since y is Cauchy.

e. h is clearly injective and thus bijective onto its image. It is clearly linear and so
is a bijective linear transformation which is thus a vector space isomorphism onto its
image. And it is norm preserving by the definition of the norm on equivalence classes
of Cauchy sequences.

To show that its image is dense inX, consider any given any equivalence class of Cauchy
sequences [{xn}] and any ε > 0. Choose N s.t. if m,n ≥ N , then ||xm − xn|| < ε. Let
y = {xN , xN , xN , . . .}. Then [y] is in the image of h and in X,

||[x]− [y]|| = lim
j→∞
||xj − xN || < ε.

f. If h is onto, then it is an isometric isomorphism onto X which is a Banach space
and thus X is also a Banach space.

Conversely, suppose that X is a Banach space. Then every Cauchy sequence {xn} in
X converges to a point x in X and {xn} is equivalent to {x, x, . . .}. Thus, [{xn}] =
[(x, x, . . .)] and thus is in the image of h. Thus, h is onto.

8. Let Ω be a metric space. Recall that

C0(Ω) = {continuous f : Ω→ R :, ∀ε > 0 ∃ compact L ⊂ Ω : ∀x 6∈ L |f(x)| < ε}

is a Banach space with the sup norm.

(a) Show that

C0(Ω) = {continuous f : Ω→ R : ∀ε > 0, f−1((−ε, ε)c) is compact}

(b) Let
K0(Ω) = {bounded, continuous f : Ω→ R : lim

x→∞
f(x) = 0}

where x→∞ means that d(x, p)→∞ for any fixed p ∈ Ω.

Show that (K0(Ω), || · ||sup) is a Banach space.

(c) Show that C0(Ω) ⊂ K0(Ω).

(d) Give an example to show that K0(Ω) need not be contained in C0(Ω).

Hint: Define a continuous function on an infinite dimensional NVS Ω which is
constant on the unit ball and decays to 0 as ||x|| → ∞.
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Solution:

a. Suppose that f belongs to the RHS. Then given any ε > 0, L := f−1((−ε, ε)c) is
compact and if x 6∈ L, then |f(x)| < ε.

Conversely, let f ∈ C0(Ω) and L a compact set for f and ε. Then f−1((−ε, ε)c) ⊂ L
and so f−1((−ε, ε)c) is a closed subset, due to the continuity of f , of a compact set and
thus is compact.

b. Suffices to show that K0(Ω) is a closed subspace of BC(Ω)

It is clearly a subspace of BC(Ω).

Verify that K0(Ω) is a closed subset of BC(Ω):

Let fn ∈ K0(Ω) s.t. fn converges uniformly to f ∈ BC(Ω). Let ε > 0. Then for some
N , ||fN − f || < ε.

Then there is some MfN ,ε s.t. if d(x, p) ≥MfN ,ε, then |fN(x)| < ε.

Then for d(x, p) ≥MfN ,ε,

|f(x)| ≤ |f(x)− fN(x)|+ |fN(x)| ≤ ||f − fN ||+ |fN(x)| < 2ε

So, f ∈ K0(Ω), and so K0(Ω) is a closed subspace of BC(Ω) and thus is a Banach
space. �

c. Let f ∈ C0(Ω). Given ε > 0, f−1((−ε, ε)c) is compact and therefore bounded, i.e.
f−1(−ε, ε)c) ⊂ BM(p) for some M . Thus f ∈ K0(Ω).

d. Example:

Let Ω be any infinite dimensional Banach space. Let f : Ω→ R be defined by

f(x) =

{
1 ||x|| ≤ 1

1/||x|| ||x|| ≥ 1

}
Then f is continuous because it is continuous on the closed unit ball, on the complement
of the open unit ball and agrees on the unit sphere, which is closed. It is clearly bounded
and lim||x||→∞ f(x) = 0. So, f ∈ K0(Ω).

For all ε > 1, f−1((−ε, ε)c) = {||x|| ≤ 1/ε} which is not compact. Thus, f 6∈ C0(Ω).

9. (a) Let X = Y = c0, the set of sequences that converge to 0, and let T : X → Y be
defined by

T ({xn}) = {xn(1− 1/n)}

Show that T is a BLT with ||T || = 1, but for any x in the unit sphere, ||Tx|| < 1.

(b) Let X be a reflexive Banach space and Y = K. Show that if T : X → Y is a BLF
with ||T || = 1, then there exists x in the unit sphere of X s.t. ||Tx|| = 1.

Solution: a. ||T || = 1:
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||T (x)|| = sup |xn(1− 1/n)| ≤ sup |xn| and so ||T || ≤ 1.

For the n-th canonical basis vector en, ||T (en)|| = 1− 1/n and so ||T || ≥ 1.

Let x be in the unit sphere of c0. Given 0 < a < 1, there exists N s.t. for n ≥ N ,
|xn| < a. Then

||T (x)|| ≤ max(|x1(0)|, |x2(1/2)|, . . . , |xN(1− 1/N)|, a)

≤ max(1− 1/N, a) < 1.

So, ||T (x)|| < 1 = ||T ||. �

b. Let Y = X∗. By Theorem 5.8b, applied to Y , for all T ∈ Y with ||T || = 1, there
exists φ ∈ Y ∗, s.t. ||φ|| = 1 and φ(T ) = ||T || = 1. Since X is reflexive, Y ∗ can be
identified with X where φ corresponds to x̂ for some x ∈ X, so that ||x|| = 1 and
T (x) = x̂(T ) = ||T || = 1.
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