Math 421/510, Homework 2, due Friday, Feb. 1, 11AM

- 1. Let $L^{\infty} = L^{\infty}((X,\mu);\mathbb{R})$, for some measure space (X,μ) , with the essential sup norm $||\cdot||_{\infty}$. For $g \in L^{\infty}$, define $T: L^{\infty} \to L^{\infty}$ by T(f) = fg. Show that T is well-defined, a BLT and $||T|| = ||g||_{\infty}$
- 2. (a) Show that if T is a BLT from an NVS $(X, || \cdot ||_1)$ to $(Y || \cdot ||_2)$, $|| \cdot ||_1$ is equivalent to $|| \cdot ||_3$ and $|| \cdot ||_2$ is equivalent to $|| \cdot ||_4$, then T is a BLT from $(X, || \cdot ||_3)$ to $(X, || \cdot ||_4)$.
 - (b) Show that any linear transformation from a finite-dimensional NVS to any NVS is a BLT.
- 3. Let $T : X \to Y$ be a linear transformation from one vector space X to another Y. Assume that each of X and Y are endowed with norms and so may be considered an NVS. Show that the following are equivalent.
 - (a) T is a BLT
 - (b) The image of every bounded set is bounded.
 - (c) For some open set U, containing 0, in X, T(U) is bounded in Y.
- 4. A homeomorphic isomorphism from one NVS X to another Y is a vector space isomorphism that is also a homeomorphism. We say that X and Y are homeomorphically isomorphic (which is sometimes just called an isomorphism in functional analysis) if there is a homeomorphic isomorphism from X to Y.
 - (a) Show that homeomorphic isomorphism is an equivalence relation on normed vector spaces.
 - (b) Show that a vector space isomorphism is a homeomorphic isomorphism iff it and its inverse are BLTs.
 - (c) Show that if X and Y are homeomorphically isomorphic, then X is a Banach space iff Y is.
 - (d) Let $X = Y = c_c$, the set of sequences that are eventually 0, considered as NVS with the sup norm. Let $T: X \to Y$ be defined by

$$T(\{x_1, x_2, x_3, \dots, \}) = \{x_1, x_2/2, x_3/3, \dots\}$$

Show that T is linear, bijective, continuous, and has a linear inverse but that T is *not* a homeomorphic isomorphism.

(later on, we will see that the open mapping theorem implies that this can't happen when X and Y are Banach spaces).

- 5. (a) Let c denote the set of convergent sequences with the sup norm. Show that c is a Banach space.
 - (b) Show that c and c_0 are homeomorphically isomorphic

- 6. An isometric isomorphism from one NVS X to another Y is a bijective norm-preserving (i.e for all x, ||Tx|| = ||x||) vector space isomorphism. If there exists such a map we say that X and Y are isometrically isomorphic.
 - (a) Show that isometric isomorphism is an equivalence relation on normed vector spaces.
 - (b) Show that a vector space isomorphism is an isometric isomorphism iff it and its inverse are BLTs with norm = 1.
 - (c) Show that isometric isomorphism implies homeomorphic isomorphism.
 - (d) Let X be the space of analytic functions on the open unit disk D which extend to continuous functions on the closed unit disk D. Let Y be the space of continuous functions on the unit circle which extend to continuous functions on D which are analytic on D (both X and Y considered as NVS with the sup norm). Show that X and Y are Banach spaces and are isometrically isomorphic.
- 7. Continuation of problem 7 of HW1:

d Show that $(\overline{X}, || \cdot ||_{\overline{X}})$ is complete. Hint: A Cauchy sequence in \overline{X} is a sequence $x^m = [\{x_n^m\}] \in \overline{X}$ s.t.

$$\lim_{m_1, m_2 \to \infty} \lim_{n \to \infty} ||x_n^{m_1} - x_n^{m_2}|| = 0 \text{ as } m_1, m_2 \to \infty.$$

Find the limit of the Cauchy sequence by a diagonal argument: $y_m = x_{k_m}^m$ where k_m is chosen appropriately.

- e Show that the map $h: X \to \overline{X}$, defined by $x \mapsto [(x, x, x, \ldots)]$ is an isometric isomorphism onto its image which is dense in \overline{X} .
- f Show that h is onto iff $(X, || \cdot ||)$ is a Banach space.
- 8. Let Ω be a metric space. Recall that

$$C_0(\Omega) = \{ continuous \ f : \Omega \to R :, \ \forall \epsilon > 0 \ \exists \ \text{compact} \ L \subset \Omega : \ \forall x \notin L \ |f(x)| < \epsilon \}$$

is a Banach space with the sup norm.

(a) Show that

$$C_0(\Omega) = \{ continuous \ f : \Omega \to \mathbb{R} : \ \forall \epsilon > 0, \ f^{-1}((-\epsilon, \epsilon)^c) \ is \ compact \}$$

(b) Let

$$K_0(\Omega) = \{bounded, continuous \ f : \Omega \to \mathbb{R} : \lim_{x \to \infty} f(x) = 0\},\$$

where $x \to \infty$ means that $d(x, p) \to \infty$ for any fixed $p \in \Omega$.

Show that $(K_0(\Omega), || \cdot ||_{sup})$ is a Banach space.

(c) Show that $C_0(\Omega) \subset K_0(\Omega)$.

- (d) Give an example to show that $K_0(\Omega)$ need not be contained in $C_0(\Omega)$. Hint: Define a continuous function on an infinite dimensional NVS Ω which is constant on the unit ball and decays to 0 as $||x|| \to \infty$.
- 9. (a) Let $X = Y = c_0$, the set of sequences that converge to 0, and let $T : X \to Y$ be defined by

$$T(\{x_n\}) = \{x_n(1 - 1/n)\}\$$

Show that T is a BLT with ||T|| = 1, but for any x in the unit sphere, ||Tx|| < 1.

(b) Let X be a reflexive Banach space and Y = K. Show that if $T : X \to Y$ is a BLF with ||T|| = 1, then there exists x in the unit sphere of X s.t. ||Tx|| = 1.