
Math 421/510 Homework 1: Due Friday, January 18, 11AM. SOLUTIONS

1. (a) Show that a subset of a complete metric space is complete iff it is closed.

(b) Show that every compact metric space is complete.

(c) Show that for a subset S of a compact metric space, the following are equivalent.

i. S is compact

ii. S is complete

iii. S is closed

(d) Show that on a metric space the uniform limit of continuous functions is contin-
uous

Solution: Throughout the solutions we take X to be our ambient metric space and S
will denote some subset.

a.

If:

Any Cauchy sequence in S is, of course, a Cauchy sequence in X and thus converges
to some x ∈ X. If S is closed then x ∈ S and so the sequence converges to an element
of S. Thus, S is complete.

Only If:

Let x ∈ X be a limit point of S. Then x is the limit of a sequence yn in S and thus is
Cauchy in S. Since S is complete, yn must converge to some y ∈ S. But yn converges
to x. So, x = y ∈ S. Thus, S is closed. �

Note: in the “Only if” we do not need the ambient space to be complete.

b. Let xn be Cauchy in compact X. Then xn has a convergent subsequence to some
x ∈ X. Thus, xn converges to x. So X is complete.

c. Assume compact. Then S is a compact metric space in its own right. So it is
complete by part b.

Assume complete. By part a, it is closed.

Assume closed. Let xn be a sequence in S. Since X is compact it has a subsequence
converging to a point x ∈ X. Since S us closed x ∈ S. Thus, S is compact.

d. Let (fn)n∈N be a sequence of functions from X to Y , both metric spaces, converging
uniformly to f . Let us show f is continuous.

Let x ∈ X and let ε > 0. We need to show that there is δ > 0 such that if 0 <
dX(x, y) < δ then dY (f(x), f(y)) < ε.

Note that for all n ∈ N the triangle inequality gives us.

dY (f(x), f(y)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f(y)) (1)

By uniform convergence, pick n such that supx∈X dY (f(x), fn(x)) < ε
3
. Since fn is

continuous, pick δ > 0 such that dY (fn(x), fn(y)) < ε
3

whenever dX(x, y) < δ.
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Putting everything together in (1) we get that if dX(x, y) < δ, then

dY (f(x), f(y)) ≤ ε

3
+
ε

3
+
ε

3
= ε,

as desired.

2. (a) Show that the collection of unions of open balls in a metric space is a topology.

(b) Show that the topology of the discrete metric is the collection of all subsets.

(c) Show that the trivial topology, T = {∅, X} on a set X with at least two points
does not come from a metric.

Solution:

a.

• (∅, X ∈ B). We have ∅ =
⋃
x∈∅B1(x) or even ∅ = B0(x) for any x ∈ X (if X 6= ∅).

Also, X =
⋃
r>0Br(0) or even X =

⋃
x∈X B1(x).

• Stable under unions. This is immediate by definition of B as unions of balls.

• Stable under finite intersection. Let x1, . . . , xn ∈ X and r1, . . . , rn > 0. Let

I =
n⋂
i=1

Bri(xi). For each x ∈ I we have

Bsx(x) ⊂ I where sx = min
1≤i≤n

(ri − d(x, xi)) > 0.

Indeed, if y ∈ Bsi(x) then

d(y, xi) ≤ d(y, x) + d(x, xi) ≤ sx + d(x, xi) ≤ ri − d(x, xi) + d(x, xi) = ri,

so y ∈ Bri(xi). We conclude that I =
⋃
x∈I

Bsx(x).

b. For the discrete metric on X, note that for all x ∈ X we have B1/2(x) = {x} so
every singleton is an open ball. Therefore for any subset S ⊂ X we have S =

⋃
x∈S{x}

is a union of open balls so it is open.

c. Let x 6= y in X. Then for any metric d, d(x, y) > 0. Let B = Bd(x,y)/2(x). Then
x ∈ B, y 6∈ B. So, Bd(x,y)/2(x) is an open set which is neither ∅ nor X.

3. Let d1(x, y) = |x − y| and d2(x, y) = | arctan(x) − arctan(y)| for x, y ∈ R (recall that
arctan : R→ (−π/2, π/2)).

(a) Show that d2 is a metric on R.

(b) Show that (R, d2) is not complete.

(c) Show that (R, d1) and (R, d2) have the same topologies, i.e., the same collections
of open sets (you may assume that tan and arctan are continuous)
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Solution:

a. Let f(x) = arctan(x). Then d2(x, y) = d1(f(x), f(y)).

Positivity: d2(x, y) = d1(f(x), f(y)) ≥ 0 and |f(x) − f(y)| = d1(f(x), f(y)) = 0 iff
f(x) = f(y) iff x = y since f is 1-1.

Symmetry:

d2(y, x) = d1(f(y), f(x)) = |f(y)− f(x)| = |f(x)− f(y)| = d1(f(x), f(y)) = d1(x, y)

Subaddivity:

d2(x, z) = d1(f(x), f(z)) ≤ d1(f(x), f(y)) + d1(f(y), f(z)) = d2(x, y) + d2(y, z)

b. Let xn = n for all n ∈ N. Since arctan(xn) is a convergent sequence with

lim
n→∞

arctan(xn) =
π

2
. Therefore, (arctan(xn))n∈N is Cauchy with respect to d1 and

so (xn)n∈N is Cauchy with respect to d2.

If xn were converging with respect to d2, with limit x we would have lim
n→∞

d2(xn, x) =

|π/2− arctan(x)| = 0 so arctan(x) =
π

2
, but no such x exists, so the sequence does not

converge. We proved that (R, d2) is not complete.

c. Let T1, T2 be the topologies of the two metrics. Since arctan(x) is continuous,
the inverse image of every d2 open set is d1-open. Thus, Thus, T2 ⊂ T1. The same
argument using tan instead of arctan shows that T1 ⊂ T2.

4. Show that in a NVS, with the norm topology

(a) x 7→ ||x|| is continuous.

(b) the closed unit ball is the closure of the open unit ball, and in particular the closed
unit ball is closed.

(c) the unit sphere is closed.

Solution:

a. Given ε > 0, let δ = ε, and then by triangle inequality, if ||x − y|| < δ = ε, then
|||x|| − ||y||| ≤ ||x− y|| < ε.

b. If xn ∈ B then ||xn|| < 1 and so by a, if xn → x, then ||x|| ≤ 1. Conversely if
x ∈ B, then xn = x(1− 1/n) ∈ B and xn → x.

c. Call S the unit sphere, then S = B1(0)\B1(0), a closed set minus an open set is
closed. Another way to see it is that Sc = {x : ‖x‖ 6= 1} = B1(0) +

⋃
‖x‖>1B‖x‖−1(x)

which is open.

A third way to see it is that if (xn)n∈N is a sequence in S, converging to x in the
ambient space, then by continuity of the norm, we have

‖x‖ = lim
n→∞

‖xn‖ = 1.

3



5. (a) Show that the Euclidean norm and `1 norm on Rn and Cn are norms.

(b) Show that two norms on the same vector space have the same topology, i.e., same
collections of open sets, iff they are equivalent as norms.

(c) Show that for two normed vector spaces with the same topology, one is complete
iff the other is.

(d) Compare the results of problems 3 and 5c. What does this tell you?

Solution:

a.

Eucldean norm: ||x||2 =
√∑n

i=1 |xi|2

Positivity: Clearly ||x||2 = 0 iff each xi = 0.

Homogeneity:

||λx||2 =

√√√√ n∑
i=1

|λxi|2 = |λ|

√√√√ n∑
i=1

|xi|2 = ||x||2

Triangle inequality:

||x+ y||22 =
n∑
i=1

|xi + yi|2 =
n∑
i=1

|xi|2 +
n∑
i=1

|yi|2 + 2Re(
n∑
i=1

xiyi)

≤
n∑
i=1

|xi|2 +
n∑
i=1

|yi|2 + 2

√√√√(
n∑
i=1

|xi|2)(
n∑
i=1

|yi|2) = (||x||2 + ||y||2)2

where the inequality follows from the Cauchy-Schwartz inequality.

`1 norm:

Positivity: Clearly ||x||1 = 0 iff each xi = 0.

Homogeneity:

||λx||1 =
n∑
i=1

|λxi| = |λ
n∑
i=1

|xi| = |λ| ||x||1

Triangle inequality:

||x+ y||1 =
n∑
i=1

|xi + yi| ≤
n∑
i=1

|xi|+
n∑
i=1

|yi| = ||x||1 + ||y||1

b. Let Bi
ε(x) be the ball in metric i.

“If:” We show that any ball in metric 2 is a union of balls in metric 1.

Let y ∈ B2
ε2

(x). Let 0 < ε1 < (1/C2)(ε2 − ||x− y||2).
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If z ∈ B1
ε1

(y), then

||z − x||2 ≤ ||z − y||2 + ||y − x||2 ≤ C2||z − y||1 + ||y − x||2 < C2ε1 + ||y − x||2 < ε2

So, B1
ε1

(y) ⊂ B2
ε2

(x),

So, T2 ⊂ T1. Reversing the roles of metrics 1 and 2, we get T1 ⊂ T2.

“Only if:”

If T1 ⊂ T2, then B1
1(0) is the union of open balls in norm 2. In particular, for some x

and ε > 0,
0 ∈ B2

ε (x) ⊂ B1
1(0)

But then letting δ = ε− d2(0, x), for any y ∈ B2
δ (0), we have

d2(y, x) ≤ d2(y, 0) + d2(0, x) < (ε− d2(0, x)) + d2(0, x) = ε,

and so
B2
δ (0) ⊂ B2

ε (x)

and so
B2
δ (0) ⊂ B1

1(0)

By continuity of || · ||, is ||x||2 ≤ δ, then ||x||1 ≤ 1.

c. This follows from part b and the fact that two equivalent norms have the same
Cauchy sequences and convergent sequences.

d. Part c is true for NVS but false for metric spaces in general.

6. Show that on a finite-dimensional vector space any two norms are equivalent as norms.
In particular, the norm metric for any finite-dimensional vector space is complete.

Solution.

Let ‖ · ‖ be an arbitrary norm on Rn or Cn.

Let M =
∑n

i=1 ‖ei‖. Write arbitrary x =
∑n

1 aiei.

‖x‖ =

∥∥∥∥∥
n∑
1

aiei

∥∥∥∥∥ ≤
n∑
1

|ai| ‖ei‖ ≤M max
i
|ai| = M‖x‖sup

This proves half of the equivalence and that x 7→ ‖x‖ is Lipschitz cts. w.r.t. the metric
d(x, y) = ‖x− y‖sup. Thus, ‖x‖ achieves a minimum on the unit ball in the sup norm,
say on some point u and this minimum cannot be 0 since the unit ball in any norm
does not contain the origin. Thus, for all x 6= 0

‖x‖ = ‖x‖sup
∥∥∥∥ x

‖x‖sup

∥∥∥∥ ≥ ‖u‖ ‖x‖sup
and so for all x

‖x‖ ≥ ‖u‖ ‖x‖sup
and this proves the other half of the equivalence.

The second statement in the problem follows from the first since Rn and Cn are com-
plete in the Euclidean norm and therefore complete in all norms.
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7. Let (X, || · ||) be a NVS. For Cauchy sequences {xn}, {yn} define the relation {xn} ∼
{yn} if ||xn − yn|| → 0.

Let X denote the equivalence classes of ∼.

(a) Show that ∼ is indeed an equivalence relation

(b) Define vector addition ( [{xn}] + [{yn}] = [{xn+yn}] ) and scalar multiplication (
λ[{xn}] = [{λxn}]) on X and verify that it is well-defined and that X is a vector
space with these operations.

(c) Define ||[{xn}]||X := limn→∞ ||xn||. Show that the limit exists and is a well-defined
norm on X.

To be continued in HW2; can you guess where we are headed?

Solution:

a. Only transitivity is non-obvious. Let {xn} ∼ {yn} and {yn} ∼ {zn}. Then

||xn − zn|| ≤ ||xn − yn||+ ||yn − zn|| → 0.

b. Addition is well-defined: If {xn} ∼ {yn} and {x′n} ∼ {y′n} , then

||xn + yn − x′n − y′n|| ≤ ||xn − x′n||+ ||yn − y′n|| → 0

Scalar multiplication is well-defined: If {xn} ∼ {yn}, then

||λxn − λyn|| = |λ|||xn − yn|| → 0

The vector space properties are clear (they follow from the the well-definedness we just
checked and the fact that the space of Cauchy sequence is a vector space).

c.
|‖xn‖ − ‖xm‖| ≤ ‖xn − xm‖

and so if xn is Cauchy then so is ‖xn‖ (as a sequence in R) and so it converges.

It is well-defined because if {xn} ∼ {yn} then

|‖xn‖ − ‖yn‖| ≤ ‖xn − yn‖ → 0

and so ||xn||, ||yn|| converge to the same limit.

Check that it is a norm:

i. If limn ||xn|| = 0 then (0, 0, . . .) ∼ (xn) and so [(xn)] = 0.

ii. limn ||λxn|| = λ limn ||xn||
iii.

‖[(xn + yn)]‖ = lim
n
‖xn + yn‖ ≤ lim

n
‖xn‖+ ‖yn‖

= lim
n
‖xn‖+ lim

n
‖yn‖ = ‖[(xn]‖+ ‖[(yn)]‖
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8. Show that for all p < 1 and n ≥ 2, (Rn, ‖ · ‖p) is not an NVS.

Solution:

‖x‖p = (
n∑
i=1

|xi|p)1/p

For p < 0, ‖x‖p =∞ when some xi = 0.

For p = 0, ‖x‖0 = n∞.

So, when p ≤ 0, ‖x‖p is not real-valued.

So, we assume 0 < p < 1.

Let x = (1, 0, . . . , 0), x = (0, 1, 0, . . . , 0). Then

‖x+ y‖p = ((1 + 1 + 0 + . . .+ 0))1/p = 21/p > 2

And
‖x‖p = ‖y‖p = 1.

So,
‖x+ y‖p > ‖x‖p + ‖y‖p

9. Show that for a σ-finite measure space (X,µ), (L∞(X,µ).|| · ||∞) is a Banach space by
modifying the proof, given in class, that (B(X), || · ||sup) is a Banach space.

Solution: For a given Cauchy sequence fn in L∞, let

Xn = {x : |fn(x)| > ||fn||∞}

For each m,n, let

Xm,n = {x : |fn(x)− fm(x)| > ||fn − fm||∞}

Let E = (∪nXn) ∪ (cupm,nXm,n).

Then µ(E) = 0 and for each x 6∈ E,

|fn(x)− fm(x)| ≤ ||fn − fm||∞

Since R is complete, for each x 6∈ E, fn(x) converges to some number which we call
f(x) ∈ R.

Will show that f ∈ L∞(X) and ||f − fn|| → 0.

Claim 1: f is essentially bounded and so f ∈ L∞.

Proof: For x 6∈ E,

|f(x)| = lim
n
|fn(x)| ≤ sup

n
|fn(x)| ≤ sup

n
||fn||∞ <∞.

Claim 2: fn converges to f in L∞.
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For x 6∈ E,

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ lim sup
m→∞

||fn − fm||∞

Thus,
||fn − f ||∞ ≤ lim sup

m→∞
||fn − fm||∞

Thus,
lim
n→∞

||fn − f ||∞ ≤ lim
n→∞

lim sup
m→∞

||fn − fm||∞ = 0. �

10. (a) Show that for fn, f ∈ L∞, fn converges to f in L∞, i.e., ||fn − f ||∞ → 0, iff
fn → f uniformly off a set of measure zero.

(b) Show that if (X,µ) is a finite measure space and f is a bounded measurable
function, then limp→∞ ||f ||p = ||f ||∞.

Solution.

a. Let (fn)n∈N be a sequence of functions. Let En a set of measure 0 such that
‖fn− f‖ = supx/∈E |fn(x)− f(x)|, namely En = {x : |fn(x)− f(x)| > ‖fn− f‖}. Then
E =

⋃
n∈NEn is a set of measure 0, as a countable union of sets of measure 0. By

construction, ‖fn − f‖ = supx/∈E |fn − f | → 0, so fn → f uniformly off E. Conversely,
if fn → f uniformly off a set S of measure 0, then 0 ≤ ‖fn− f‖ ≤ supx/∈S |fn− f | → 0,
as desired.

b. Let (X,µ) be a finite measure space and let f be a bounded measurable function.
Let E = {x : |f(x)| > ‖f‖∞}, this is a set of mesure 0, and we have

‖f‖p =

(∫
X

|f(x)|p dµ

)1/p

=

(∫
E

|f(x)|p dµ

)1/p

≤
(∫

X

‖f‖p∞ dµ

)1/p

= (‖f‖p∞µ(X))1/p

= ‖f‖∞µ(X)1/p︸ ︷︷ ︸
→1

→ ‖f‖∞.

For the reverse inequality, fix ε > 0, and let F = {x ∈ X : ‖f‖∞ ≥ |f(x)| ≥ ‖f‖∞−ε}.
By definition of ‖f‖∞ it is clear that F has a nonzero measure. We get

‖f‖p =

(∫
X

|f(x)|p dµ

)1/p

≥
(∫

F

|f(x)|p dµ

)1/p

≥
(∫

F

(‖f‖∞ − ε)p dµ

)1/p

= ((‖f‖∞ − ε)pµ(F ))1/p

= (‖f‖∞ − ε)µ(F )1/p︸ ︷︷ ︸
→1

→ (‖f‖∞ − ε).
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This is true for every ε > 0, so

‖f‖∞ = sup
ε>0

(‖f‖∞ − ε) ≤ lim
p→∞
‖f‖p ≤ ‖f‖∞,

as desired.
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