Math 421/510 Homework 1: Due Friday, January 18, 11AM. SOLUTIONS

1.

(a) Show that a subset of a complete metric space is complete iff it is closed.
(b) Show that every compact metric space is complete.
(c¢) Show that for a subset S of a compact metric space, the following are equivalent.

i. S is compact
ii. .S is complete
iii. S is closed

(d) Show that on a metric space the uniform limit of continuous functions is contin-
uous

Solution: Throughout the solutions we take X to be our ambient metric space and S
will denote some subset.

a.

If:

Any Cauchy sequence in S is, of course, a Cauchy sequence in X and thus converges
to some x € X. If S is closed then x € S and so the sequence converges to an element
of S. Thus, S is complete.

Only If:

Let x € X be a limit point of S. Then x is the limit of a sequence y,, in S and thus is
Cauchy in S. Since S is complete, y, must converge to some y € S. But y,, converges
tox. So, x =y € S. Thus, S is closed. [

Note: in the “Only if” we do not need the ambient space to be complete.
b. Let z, be Cauchy in compact X. Then z, has a convergent subsequence to some
x € X. Thus, z, converges to z. So X is complete.

c. Assume compact. Then S is a compact metric space in its own right. So it is
complete by part b.

Assume complete. By part a, it is closed.

Assume closed. Let z, be a sequence in S. Since X is compact it has a subsequence
converging to a point x € X. Since S us closed x € S. Thus, S is compact.

d. Let (f,)nen be a sequence of functions from X to Y, both metric spaces, converging
uniformly to f. Let us show f is continuous.

Let z € X and let ¢ > 0. We need to show that there is § > 0 such that if 0 <
dx(x,y) < d then dy(f(z), f(y)) < e.

Note that for all n € N the triangle inequality gives us.
dy (f(x), f(y)) < dy(f(2), fa(@)) + dy (fu(@), fa(y)) + dy (fu(y), [(y)) (1)

By uniform convergence, pick n such that sup,cy dy(f(z), fu(z)) < 5. Since f, is
continuous, pick 6 > 0 such that dy (f.(x), fu(y)) < § whenever dx(z,y) < d.

1



Putting everything together in (1) we get that if dx(x,y) < 4, then

dy (f(x), f(y)) <

as desired.
2. (a) Show that the collection of unions of open balls in a metric space is a topology.

(b) Show that the topology of the discrete metric is the collection of all subsets.
(c¢) Show that the trivial topology, T = {0, X} on a set X with at least two points
does not come from a metric.
Solution:
a.
o (0,X € B). Wehave ) =,y Bi(z) or even ) = By(x) for any z € X (if X # 0).
Also, X = J,~¢ B:(0) or even X = J,.x Bi(z).
e Stable under unions. This is immediate by definition of B as unions of balls.

e Stable under finite intersection. Let xy,...,z, € X and ry,...,r, > 0. Let

I= ﬂ B,,(z;). For each x € I we have

i=1

B, (x) CI  where s, = 1@‘121 (ri —d(z,z;)) > 0.

Indeed, if y € B;,(z) then
d(y,z;) < d(y,z) +d(z,2;) < s, +d(z,2;) < vy —d(x,2) + d(2, 23) = 13

so y € B, (x;). We conclude that I = U Bs, ().

zel

b. For the discrete metric on X, note that for all € X we have By(x) = {z} so
every singleton is an open ball. Therefore for any subset S C X we have S = J,.¢{7}
is a union of open balls so it is open.

c. Let v # y in X. Then for any metric d, d(z,y) > 0. Let B = By(;4)/2(x). Then
r € B,y & B. S0, By(zy)2(x) is an open set which is neither () nor X.

3. Let dy(x,y) = | — y| and dy(z,y) = | arctan(x) — arctan(y)| for x,y € R (recall that
arctan : R — (—n/2,7/2)).
(a) Show that d5 is a metric on R.
(b) Show that (R, ds) is not complete.

(c¢) Show that (R,d;) and (R, dy) have the same topologies, i.e., the same collections
of open sets (you may assume that tan and arctan are continuous)



Solution:
a. Let f(x) = arctan(z). Then dy(x,y) = di(f(x), f(y))-

Positivity: da(z,y) = di(f(2), f(y)) = 0 and |f(z) — f(y)] = di(f(2), f(y)) = O iff
f(z) = f(y) iff © = y since f is 1-1.

Symmetry:
dao(y, ) = di(f(y), f(2)) = [f(y) — f(2)| = |f(z) = f(y)| = di(f(2), [(y)) = d(z,y)
Subaddivity:
do(x,2) = di(f(2), f(2)) < di(f(2), f(y)) + di(f(y), [(2)) = da(2,y) + da(y, 2)
b. Let 2, = n for all n € N. Since arctan(z,) is a convergent sequence with

lim arctan(z,) = g Therefore, (arctan(x,)),en is Cauchy with respect to d; and
n—oo

S0 (2 )nen is Cauchy with respect to ds.

If x,, were converging with respect to dy, with limit  we would have lim dy(x,,z) =
n—oo

’/T
|7/2 —arctan(x)| = 0 so arctan(x) = BL but no such x exists, so the sequence does not
converge. We proved that (R, dy) is not complete.

c. Let 71, 7: be the topologies of the two metrics. Since arctan(z) is continuous,
the inverse image of every ds open set is di-open. Thus, Thus, 75 C 7;. The same
argument using tan instead of arctan shows that 73 C 7.

. Show that in a NVS, with the norm topology

(a) x > ||z|| is continuous.

(b) the closed unit ball is the closure of the open unit ball, and in particular the closed
unit ball is closed.

(c) the unit sphere is closed.

Solution:

a. Given € > 0, let 0 = ¢, and then by triangle inequality, if ||z — y|| < § = ¢, then
]l = [lylll < llz =yl <e.

b. If z, € B then [|z,,|| < 1 and so by a, if 2, — z, then [[z|| < 1. Conversely if
x € B, then z,, = 2(1 —1/n) € B and z,, — z.

c. Call S the unit sphere, then S = B;(0)\B1(0), a closed set minus an open set is
closed. Another way to see it is that S¢ = {z : [|z]| # 1} = B1(0) + Ujz>1 Bijej-1(2)
which is open.

A third way to see it is that if (x,)n,en 1S a sequence in S, converging to x in the
ambient space, then by continuity of the norm, we have

lall = lim [l | = 1.



(a) Show that the Euclidean norm and ¢; norm on R” and C™ are norms.
(b) Show that two norms on the same vector space have the same topology, i.e., same
collections of open sets, iff they are equivalent as norms.
(¢) Show that for two normed vector spaces with the same topology, one is complete
iff the other is.
(d) Compare the results of problems 3 and 5c. What does this tell you?
Solution:
a.
Eucldean norm: ||z|l2 = /Y iy |2i]?

Positivity: Clearly ||x||s = 0 iff each z; = 0.

Homogeneity:
[|Az]l2 = Zn: | Azi[? = |Al Zn: |zi|* = [|]]2
i=1 i=1
Triangle inequality:
et glB =S et = 3+ S l? 4 2Re(> )
i=1 i=1 i=1 i=1

<Dl Yl 2, | Qo ) Qo il = (el + [lyll2)®
=1 =1 =1 =1

where the inequality follows from the Cauchy-Schwartz inequality.
/1 norm:
Positivity: Clearly ||z||; = 0 iff each z; = 0.

Homogeneity:
Al =D ail =AY Jaal = Al [l
i=1 i=1

Triangle inequality:

e +yllh =D e+ ul <Y lzal + ) Lyl = |zl + Iyl
i=1 =1 i=1

b. Let BY(z) be the ball in metric 1.

“If:” We show that any ball in metric 2 is a union of balls in metric 1.

Let y € B2 (x). Let 0 < €1 < (1/Co)(e2 — ||z — y]]2)-



If z € B! (y), then
lz =zl <[z =yl + lly — 2|l < Collz —ylli + Iy —zlls < Coar +[ly — 2|2 < &
So, B, (y) C B,(x),
So, T2 C Ti. Reversing the roles of metrics 1 and 2, we get 77 C 7Ts.
“Only if:”

If 71 C 75, then B{(0) is the union of open balls in norm 2. In particular, for some
and € > 0,
0 € B?(x) C B;(0)

But then letting § = € — dy(0, x), for any y € B2(0), we have
d2(y7$) < dQ(yvo) + d2(07‘%) < (E - d2(07$)) + dg(O,fL’) =6

and so

B;(0) C B(x)
and so

B;(0) € B;(0)
By continuity of || - ||, is ||z]|]2 < J, then ||z||; < 1.

c. This follows from part b and the fact that two equivalent norms have the same
Cauchy sequences and convergent sequences.

d. Part c is true for NVS but false for metric spaces in general.

. Show that on a finite-dimensional vector space any two norms are equivalent as norms.
In particular, the norm metric for any finite-dimensional vector space is complete.
Solution.

Let || - || be an arbitrary norm on R™ or C".
Let M =37 |le;]]. Write arbitrary z = Y] ase;.

n
E ai€;
1

This proves half of the equivalence and that z — ||z|| is Lipschitz cts. w.r.t. the metric
d(z,y) = || — y||sup- Thus, ||z| achieves a minimum on the unit ball in the sup norm,
say on some point v and this minimum cannot be 0 since the unit ball in any norm
does not contain the origin. Thus, for all z #£ 0

)] =

n
< lail fleill < Mmax|a;| = M|z lsup
1

T

— | > ||u]| ||z
| 2 el el

2]l = {2 llsup

and so for all x
[l > [lull [[2]|sup

and this proves the other half of the equivalence.

The second statement in the problem follows from the first since R™ and C™ are com-
plete in the Euclidean norm and therefore complete in all norms.

5



7. Let (X, || - |]) be a NVS. For Cauchy sequences {z,},{y,} define the relation {z,} ~
{yn} i [[2n = yall = 0.

Let X denote the equivalence classes of ~.

(a) Show that ~ is indeed an equivalence relation

(b) Define vector addition ( [{z,}]+ [{yn}] = [{n +yn}] ) and scalar multiplication (

M{z,}] = [{Mz,}]) on X and verify that it is well-defined and that X is a vector
space with these operations.

(c) Define [[[{z,}]||5 = lim, o0 |2 |[. Show that the limit exists and is a well-defined
norm on X.

To be continued in HW2; can you guess where we are headed?

Solution:

a. Only transitivity is non-obvious. Let {z,} ~ {y,} and {y,} ~ {z.}. Then

[|lzn = znl| < {lzn = ynll + [lyn — 20l = 0.

b. Addition is well-defined: If {z,} ~ {y,} and {2/} ~ {y/} , then
|20 + 0 — 25, = Yol | < lzn = 20+ [[gn — ]l = 0
Scalar multiplication is well-defined: If {x,} ~ {y,}, then
1Az = Aynl| = [All[2n = ynl| = 0

The vector space properties are clear (they follow from the the well-definedness we just
checked and the fact that the space of Cauchy sequence is a vector space).

C.
lznll = llzmll] < llzn = 2mll

and so if x,, is Cauchy then so is ||x,|| (as a sequence in R) and so it converges.

It is well-defined because if {x,} ~ {y,} then

lzall = llgnlll < llzn = yall =0

and so ||z,||, ||yn|| converge to the same limit.
Check that it is a norm:
i. If lim, ||z,|| = 0 then (0,0,...) ~ (x,) and so [(z,)] = 0.
ii. lim, ||Az,|| = Alim,, ||z,]|
iil.
11z 4 y)I| = T [z, 4+ gn[| < T[] + [[ynl]

= T [|z, [} +Tim [y | = [{(2n][] + ([ ()]



8. Show that for all p < 1 and n > 2, (R, - ||,) is not an NVS.

Solution: .
lll, = O Jaf?) !/
i=1

For p <0, ||z||, = co when some z; = 0.
For p =0, ||z|jo = n*.

So, when p < 0, ||z||, is not real-valued.

So, we assume 0 < p < 1.
Let x = (1,0,...,0), z = (0,1,0,...,0). Then
lz+yll,=((1+1+0+...+0)/? =217 > 2

And
Izl = llyll, = 1.

So,
[l +yllp > llzllp + [yl

9. Show that for a o-finite measure space (X, p), (L=(X, 1).|| - ||s) is a Banach space by
modifying the proof, given in class, that (B(X),|| - ||sup) is a Banach space.

Solution: For a given Cauchy sequence f,, in L™, let
For each m, n, let
Xng = {2 | fa(@) = fin(@)] > |[fn = finlloc}

Let B = (U, X,) U (cupmnXmn)-
Then u(E) = 0 and for each = ¢ E,

Since R is complete, for each x ¢ FE, f,(x) converges to some number which we call

f(z) € R.
Will show that f € L>(X) and ||f — fa|| — 0.

Claim 1: f is essentially bounded and so f € L.

Proof: For x ¢ E,

|f ()] = lim |, (2)] < sup | fu(2)] < sup [[fol]oe < o0

Claim 2: f,, converges to f in L.



10.

For x ¢ F,
o) = f(2)] = lim | fn(2) = frn(2)] < limsup[|fo = finlloo

m—ro0

Thus,
[ fo = flloo <limsup||fn = finlloo

m— 00

Thus,
n—o00 n—o00

m—00
(a) Show that for f,, f € L™, f, converges to f in L* ie., ||fn — flloc — 0, iff
fn — f uniformly off a set of measure zero.

(b) Show that if (X, p) is a finite measure space and f is a bounded measurable
function, then lim, .o || f]|, = || f|] -

Solution.

a. Let (fu)nen be a sequence of functions. Let E, a set of measure 0 such that
1 — £ = P | () — F(2)], nemely By = {z ¢ | ful) — £(2)| > | fo — £11}. Then
E = U,en En is a set of measure 0, as a countable union of sets of measure 0. By
construction, || f, — fl| = sup,¢p [fn — f| = 0, s0 f, — f uniformly off E. Conversely,
if f, — f uniformly off a set S of measure 0, then 0 < || f,, — f|| < sup,¢g[fn— f] = 0,
as desired.

b. Let (X, pu) be a finite measure space and let f be a bounded measurable function.
Let E = {x:|f(z)| > ||fllo}, this is a set of mesure 0, and we have

ity = ([ 1o dﬂ>1/p ~([1sr du>1/p

< ( J st dﬂ) R

= [ llocps(X)' = 1 f .
——

—1

For the reverse inequality, fix ¢ > 0, and let ' = {x € X : || f|lc > |f(2)| > || fllcc —€}-
By definition of || f||« it is clear that F' has a nonzero measure. We get

111, = ([ 17p an) "
> ([ rwp an) "

1/p
> ([l = 27 dn) " = (7 = 2PuCey
= (Il = aF)" = (Il — ).

—1



This is true for every € > 0, so
[fllse = sup([[fllec —&) < Tim [ f[l, < [[f]]oe,
e>0 p—0

as desired.



