Math 421/510 Homework 1: Due Friday, January 18, 11AM.

- 1. (a) Show that a subset of a complete metric space is complete iff it is closed.
 - (b) Show that every compact metric space is complete.
 - (c) Show that for a subset S of a compact metric space, the following are equivalent.
 - i. S is compact
 - ii. S is complete
 - iii. S is closed
 - (d) Show that on a metric space the uniform limit of continuous functions is continuous
- 2. (a) Show that the collection of unions of open balls in a metric space is a topology.
 - (b) Show that the topology of the discrete metric is the collection of all subsets.
 - (c) Show that the trivial topology, $\mathcal{T} = \{\emptyset, X\}$ on a set X with at least two points does not come from a metric.
- 3. Let $d_1(x, y) = |x y|$ and $d_2(x, y) = |\arctan(x) \arctan(y)|$ for $x, y \in \mathbb{R}$ (recall that $\arctan : \mathbb{R} \to (-\pi/2, \pi/2)$).
 - (a) Show that d_2 is a metric on \mathbb{R} .
 - (b) Show that (\mathbb{R}, d_2) is not complete.
 - (c) Show that (\mathbb{R}, d_1) and (\mathbb{R}, d_2) have the same topologies, i.e., the same collections of open sets (you may assume that tan and arctan are continuous)
- 4. Show that in a NVS, with the norm topology
 - (a) $x \mapsto ||x||$ is continuous.
 - (b) the closed unit ball is the closure of the open unit ball, and in particular the closed unit ball is closed.
 - (c) the unit sphere is closed.
- 5. (a) Show that the Euclidean norm and ℓ_1 norm on \mathbb{R}^n and \mathbb{C}^n are norms.
 - (b) Show that two norms on the same vector space have the same topology, i.e., same collections of open sets, iff they are equivalent as norms.
 - (c) Show that for two normed vector spaces with the same topology, one is complete iff the other is.
 - (d) Compare the results of problems 3 and 5c. What does this tell you?
- 6. Show that on a finite-dimensional vector space any two norms are equivalent as norms. In particular, the norm metric for any finite-dimensional vector space is complete.

7. Let $(X, || \cdot ||)$ be a NVS. For Cauchy sequences $\{x_n\}, \{y_n\}$ define the relation $\{x_n\} \sim \{y_n\}$ if $||x_n - y_n|| \to 0$.

Let \overline{X} denote the equivalence classes of \sim .

- (a) Show that \sim is indeed an equivalence relation
- (b) Define vector addition $([\{x_n\}] + [\{y_n\}] = [\{x_n + y_n\}])$ and scalar multiplication $(\lambda[\{x_n\}] = [\{\lambda x_n\}])$ on \overline{X} and verify that it is well-defined and that \overline{X} is a vector space with these operations.
- (c) Define $||[\{x_n\}]||_{\overline{X}} := \lim_{n \to \infty} ||x_n||$. Show that the limit exists and is a well-defined norm on \overline{X} .

To be continued in HW2; can you guess where we are headed?

- 8. Show that for all p < 1 and $n \ge 2$, $(\mathbb{R}^n, || \cdot ||_p)$ is not an NVS.
- 9. Show that for a σ -finite measure space (X, μ) , $(L^{\infty}(X, \mu).||\cdot||_{\infty})$ is a Banach space by modifying the proof, given in class, that $(B(X), ||\cdot||_{sup})$ is a Banach space.
- 10. (a) Show that for $f_n, f \in L^{\infty}$, f_n converges to f in L^{∞} , i.e., $||f_n f||_{\infty} \to 0$, iff $f_n \to f$ uniformly off a set of measure zero.
 - (b) Show that if (X, μ) is a finite measure space and f is a bounded measurable function, then $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.