This test consists of six pages (pages 2, 4, 6 are blank). A table of Laplace transforms is on page 7, and anything written on page 7 will not be marked.

This test consists of 3 problems, each worth 15 marks.

Time: 50 minutes. This is a closed book examination: no books, notes, electronic calculation, memory or communication devices are allowed. Calculators and cell phones are not allowed.

JUSTIFY ALL ANSWERS. Numerical answers should be “calculator-ready”.

Marks

1. An LRC series circuit is forced with an AC voltage, with \(L = 1 \) henry, \(R = 2 \) ohms, \(C = \frac{1}{5} \) farad, and voltage \(v(t) = \sin 2t \) volts. The charge \(q(t) \) on the capacitor, in coulombs, satisfies the differential equation

\[
q'' + 2q' + 5q = \sin 2t.
\]

(a) Find the general solution \(q(t) \) of the non-homogeneous equation.

(b) Identify the part(s) of the general solution that approaches 0 as \(t \to \infty \), called the transient solution.

(c) The part(s) of the general solution that is not the transient solution is the steady-state solution \(q_{ss}(t) \). If the steady-state solution is written in the phase-amplitude form \(q_{ss}(t) = Q_0 \cos(\omega t - \theta) \), what numerical values are \(Q_0 \), \(\omega \) and \(\theta \)?

Solution:

a. The characteristic equation of the homogeneous equation is \(r^2 + 2r + 5 = 0 \), whose roots are \(r = -1 \pm 2i \). So, the general solution of the homogeneous equation is

\[
c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t).
\]

The non-homogeneous term is not of this form. So, according to the method of undetermined coefficients we guess a particular solution (which is the steady-state solution) of the form

\[
y = A \cos(2t) + B \sin(2t)
\]

Plugging this into the differential equation, we obtain

\[
-4A \cos(2t) - 4B \sin(2t) + 2(-2A \sin(2t) + 2B \cos(2t)) + 5(A \cos(2t) + B \sin(2t)) = \sin(2t)
\]

which simplifies to

\[
(-4A + 4B + 5A) \cos(2t) + (-4B - 4A + 5B) \sin(2t) = \sin(2t)
\]

and results in the system of linear equations

\[
A + 4B = 0, \quad B - 4A = 1
\]
whose solution is

\[A = -\frac{4}{17}, \quad B = \frac{1}{17}. \]

So a particular solution is:

\[(-\frac{4}{17}) \cos(2t) + (\frac{1}{17}) \sin(2t). \]

The general solution of the non-homogeneous equation is

\[c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t) + (-\frac{4}{17}) \cos(2t) + (\frac{1}{17}) \sin(2t). \]

b. \[c_1 e^{-t} \cos(2t) + c_2 e^{-t} \sin(2t) \]

c. \[(-\frac{4}{17}) \cos(2t) + (\frac{1}{17}) \sin(2t), \]

which can be written in the form \(Q_0 \cos(\omega t - \theta) \), where

\[Q_0 = \sqrt{(-\frac{4}{17})^2 + (\frac{1}{17})^2} = \frac{\sqrt{17}}{17}, \]

\[\omega = 2, \]

\[\theta = \arctan(-\frac{1}{4}) + \pi = -\arctan(\frac{1}{4}) + \pi \]

(noting that \((-\frac{4}{17}, \frac{1}{17})\) is in quadrant II).
2. Solve the initial value problem

\[y'' + y = g(t) + \delta(t - 5), \quad y(0) = 0, y'(0) = 0 \]

where

\[g(t) = \begin{cases}
2 & 0 \leq t < 3 \\
0 & t \geq 3
\end{cases} \]

You may leave your answer in terms of unit step functions.

Solution:

\[g(t) = 2 - 2u_3(t). \]

From the table, we obtain

\[\mathcal{L}(g(t)) = \frac{2}{s} - \frac{2e^{-3s}}{s} \quad \text{and} \quad \mathcal{L}(\delta(t - 5)) = e^{-5s}. \]

\[\mathcal{L}(y'' + y) = s^2Y(s) + Y(s) \] where \(Y(s) = \mathcal{L}(y(t)) \). So,

\[Y(s) = 2 \frac{1}{s((s^2 + 1)s)} (1 - e^{-3s}) + \frac{e^{-5s}}{s^2 + 1} \]

By partial fractions decomposition,

\[\frac{1}{(s^2 + 1)s} = \frac{-s}{s^2 + 1} + \frac{1}{s} \]

So,

\[Y(s) = \frac{-2s}{s^2 + 1} + \frac{2}{s} + \frac{2se^{-3s}}{s^2 + 1} - \frac{2e^{-3s}}{s} + \frac{e^{-5s}}{s^2 + 1} \]

From the table, we obtain

\[y(t) = -2 \cos(t) + 2 + 2u_3(t) \cos(t - 3) - 2u_3(t) + u_5(t) \sin(t - 5) \]
(blank page for work)
3. Consider the system:

\[x' = \begin{pmatrix} 1 & 3 \\ 0 & -3 \end{pmatrix} x \]

(a) Find a fundamental set of solutions and verify that your set is a fundamental set of solutions.

(b) Sketch the phase plane.

(c) For what values of \(a \) and \(b \), does the solution with initial conditions \(x_1(0) = a, x_2(0) = b \), converge to \((0, 0)\) as \(t \to \infty \)?

Solution:

Characteristic equation:

\[
\det \begin{bmatrix} 1 - r & 3 \\ 0 & -3 - r \end{bmatrix} = 0.
\]

which is \(r^2 + 2r - 3 = 0 \), which factors as \((r - 1)(r + 3) = 0\).

So, the eigenvalues are \(r = 1, -3 \).

An eigenvector for \(r = 1 \) is found by solving

\[
\begin{bmatrix} 1 & 3 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}
\]

which can be written as

\[v_1 + 3v_2 = v_1, -3v_2 = v_2 \]

It follows that \(v_2 = 0 \) and \(v_1 \) can be taken to be any non-zero real number. We choose

\[
\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

So, one solution is

\[
\begin{bmatrix} e^t \\ 0 \end{bmatrix}
\]

An eigenvector for \(r = -3 \) is found by solving

\[
\begin{bmatrix} 1 & 3 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -3w_1 \\ -3w_2 \end{bmatrix}
\]

which can be written as

\[w_1 + 3w_2 = -3w_1, -3w_2 = -3w_2 \]

which is equivalent to \(w_2 = -(4/3)w_1 \).

We choose

\[
\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}
\]

So, another solution is

\[
\begin{bmatrix} 3e^{-3t} \\ -4e^{-3t} \end{bmatrix}
\]
A fundamental set of solutions is:

\[
\left\{ \begin{bmatrix} e^t \\ 0 \end{bmatrix}, \begin{bmatrix} 3e^{-3t} \\ -4e^{-3t} \end{bmatrix} \right\}
\]

because the wronskian is

\[
\det \begin{bmatrix} e^t & 3e^{-3t} \\ 0 & -4e^{-3t} \end{bmatrix} = -4e^{-2t} \neq 0.
\]

b. Draw a saddle with expanding direction

\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

and contracting direction

\[
\begin{bmatrix} 3 \\ -4 \end{bmatrix}
\]

c. The origin is a saddle equilibrium and so the only solutions that converge to the origin, as \(t \to \infty \), are those with initial conditions along the eigenvector corresponding to the negative eigenvalue. These initial conditions are \(b = -(4/3)a \), where \(a \) is arbitrary.