MATH 256 Sections 102 & 103)
Homework Assignment 7
Due 2:00 p.m. Friday 2015 November 6
Homework submitted after 2:50 will not be marked.

1. Use the Laplace transform (use Table 6.2.1 on p. 321) to solve the initial value problems:
 (a) \(y'' - 2y' + 2y = \cos t, \quad y(0) = 1, \quad y'(0) = 0. \)
 (b) \(y'' + 2y' + y = 4e^{-t}, \quad y(0) = 2, \quad y'(0) = -1. \)

2. Find the inverse Laplace transform of \(F(s) = \frac{2(s-1)e^{-2s}}{s^2-2s+2}. \)

3. Use the Laplace transform to solve the initial value problem
 \[y'' + 2y' + 2y = g(t), \quad y(0) = 0, \quad y'(0) = 1, \]
 where \(g(t) = 1 \) for \(\pi \leq t < 2\pi \) and \(g(t) = 0 \) otherwise. Express the solution \(y(t) \) as a piecewise defined function, simplified.

4. Use the Laplace transform to solve the initial value problem
 \[y'' + y = g(t), \quad y(0) = 0, \quad y'(0) = 1, \]
 where \(g(t) = t/2 \) for \(0 \leq t < 6 \) and \(g(t) = 3 \) for \(t \geq 6 \). Sketch the graphs of the forcing function ("input") \(g(t) \) versus \(t \), and the solution ("output") \(y(t) \) versus \(t \).

5. Use the Laplace transform to solve the initial value problem
 \[y'' + y = u_{\pi/2}(t) + 3\delta \left(t - \frac{3\pi}{2} \right) - u_{2\pi}(t), \quad y(0) = 0, \quad y'(0) = 0. \]