JUSTIFY ALL OF YOUR ANSWERS. YOU MAY USE RESULTS FROM CLASS AND HOMEWORK.

CALCULATORS, NOTES OR BOOKS ARE NOT PERMITTED.

THERE ARE 4 PROBLEMS ON THIS EXAM.
1. Let $\vec{r}(t) = \left((1/3)(1 + 2t)^{3/2}, (1/2)t^2 \right)$, $0 \leq t \leq 1$.

 (a) Find the arclength parameterization of the oriented curve which is the image of $\vec{r}(t)$.

 (b) Find the arclength parameterization of the same curve but with reversed orientation.
Blank page
2. Let \(\vec{r}(t) \) be a \(C^2 \) smooth parameterization, \(\vec{v}(t) := \vec{r}'(t) \), and \(\vec{a}(t) := \vec{r}''(t) \). Fix \(t \).

(a) Show that \(\vec{a}(t) \) is orthogonal to \(\vec{v}(t) \) iff \(||\vec{v}(t)||' = 0 \).

(b) Show that \(\vec{a}(t) \) is parallel to \(\vec{v}(t) \) iff \(\kappa(t) = 0 \).
Blank page
Consider a C^4 smooth curve with nowhere-zero curvature. Let
\[\overline{w}(s) = \tau(s)T(s) + \kappa(s)B(s) \]

(a) Show that $||\overline{w}(s)|| = \sqrt{(\kappa(s))^2 + (\tau(s))^2}$.

(b) Show that $\mathbf{N}'(s) = \overline{w}(s) \times \mathbf{N}(s)$

(c) Show that the curve is a helix iff $\overline{w}(s)$ is a constant vector.
Blank page
4. Let \(f(t) = t^4 \sin(1/t) \) if \(t \neq 0 \) and \(f(0) = 0 \). Let

\[
\vec{r}(t) = \begin{cases}
(t, f(t), 0) & t \geq 0 \\
(t, 0, f(t)) & t < 0
\end{cases}
\]

(a) Show that \(\vec{r}(t) \) is a smooth parameterization.

(b) Find the unit tangent vector at \(t = 0 \).

(c) Find the curvature at \(t = 0 \).

(d) Show that for each \(t \), either the curvature is 0 or the torsion is 0.