Math 227, Homework #7, due Friday, March 9, SOLUTIONS

(1) Let
\[\pi(u, v) = ((2 + \cos(v)) \cos(u), (2 + \cos(v)) \sin(u), \sin(v)) \]
defined the domain \(D = \{(u, v) : 0 \leq u \leq 2\pi, \ 0 \leq v \leq 2\pi \}. \)

(a) Show that \(\pi \) is smooth on the interior of \(D \), i.e., that \(\pi \) is \(C^1 \) and the normal \(\mathbf{n} := \frac{\partial \pi}{\partial u} \times \frac{\partial \pi}{\partial v} \neq 0. \)

(b) Show that \(\pi \) is one-to-one on the interior of \(D \) (i.e., on the set \(\{(u, v) : 0 < u < 2\pi, \ 0 < v < 2\pi \} \)).

(c) Find all values of \(u, v, u', v' \) such that \(\pi(u, v) = \pi(u', v') \).

(d) Describe the \(u \)-curves and \(v \)-curves

(e) What surface is this? (i.e., what is the image of \(\pi \) on the domain \(D \))

Solution:

(a): \(\pi \) is \(C^1 \) because \(\sin \) and \(\cos \) are \(C^1 \).

\[\frac{\partial \pi}{\partial u} = (-2 + \cos(v)) \sin(u), (2 + \cos(v)) \cos(u), 0 \]

\[\frac{\partial \pi}{\partial v} = (-\sin(v) \cos(u), -\sin(v) \sin(u), \cos(v)) \]

So,

\[\mathbf{n} := \frac{\partial \pi}{\partial u} \times \frac{\partial \pi}{\partial v} = ((2 + \cos(v)) \cos(u), (2 + \cos(v)) \sin(u), (2 + \cos(v)) \sin(v)) \]

So,

\[\mathbf{n} := |2 + \cos(v)| = 2 + \cos(v) \in [1, 3] \]

and so \(\mathbf{n} \) is never \(0. \)

(b) Let \((u, v) \in D \) and \((x, y, z) = \pi(u, v) \). Then \(\sin(v) = z \) and \(\cos(v) = \sqrt{x^2 + y^2 - 2} \). Thus, given \((x, y, z) \) we can uniquely determine \((\cos(v), \sin(v)) \), and hence \(v \) up to \(\pm 2\pi \). Then \(\cos(u) = x/(2 + \cos(v)) \) and \(\sin(u) = y/(2 + \cos(v)) \) and thus we can uniquely determine \((\cos(u), \sin(u)) \), and hence \(u \) up to \(\pm 2\pi \).

Thus, given \((x, y, z) \) we can uniquely determine \(u \) and \(v \), each up to \(\pm 2\pi \).

This implies that \(\pi \) is one-to-one on the interior of \(D \).

(c) By the argument in part (1), if \(\pi(u, v) = \pi(u', v') \) and \((u, v) \neq (u', v') \), then the only possibilities are:

- \{u, u'\} = \{0, 2\pi\} and \(v = v' \)
- \{v, v'\} = \{0, 2\pi\} and \(u = u' \)
- \{u, u'\} = \{0, 2\pi\} and \(\{v, v'\} = \{0, 2\pi\} \).

(d) \(u \)-curves: for constant \(v_0 \), the curve is the intersection of \(x^2 + y^2 = (2 + \cos(v_0))^2 \) and \(z = \sin(v_0) \), which is a circle centered at \((0, 0, \sin(v_0)) \) of radius \(2 + \cos(v_0) \) in the plane \(z = \sin(v_0) \).

\(v \)-curves: for constant \(u_0 \), the curve is the intersection of \((x - 2 \cos(u_0))^2 + (y - 2 \sin(u_0))^2 + z^2 = 1 \) and \(y = \tan(u_0)x \) which is a circle centered at \((2 \cos(u_0), 2 \sin(u_0), 0) \) of radius 1 in the plane \(y = \tan(u_0)x \) (when \(\tan(u_0) = \infty \), this is the plane \(x = 0 \)).

(e) By the result of part (2), the image of \(D \) is obtained by identifying the left and right sides with one another and the top and bottom sides with one another (without a twist). By part (1), there are no other identifications. Thus, we get a torus.
The u-curves are circles that go the long way around the donut hole. The v-curves are circles that go the short way around.

(2) Let $G(x,y,z)$ be C^1. Assume that $\nabla G(x_0,y_0,z_0) \neq (0,0,0)$. Let S be the level surface $G(x,y,z) = G(x_0,y_0,z_0)$. Show that for a sufficiently small ball B centered at (x_0,y_0,z_0), for the surface $B \cap S$, the area element is at least one of $dS = |\nabla G(x,y,z)|/|G_z(x,y,z)|\,dx\,dy$ or $dS = |\nabla G(x,y,z)|/|G_y(x,y,z)|\,dx\,dz$ or $dS = |\nabla G(x,y,z)|/|G_x(x,y,z)|\,dy\,dz$.

Solution: Since $\nabla G(x_0,y_0,z_0) \neq (0,0,0)$, at least one of its components is nonzero. Without loss of generality, $G_z(x_0,y_0,z_0) \neq 0$. By the implicit function theorem, for a sufficiently small ball B centered at (x_0,y_0,z_0), there is a function $g(x,y)$ such that for $(x,y,z) \in B$, we have $(x,y,z) \in S$ iff $z = g(x,y)$. This means that the projection of $B \cap S$ to the xy-plane is one-to-one. Then the result follows by the discussion in class (see the discussion in the middle of page 902).

Section 15.6: 4, 11, 12, 17
Section 16.1: 6, 7, 8, 10