Math 227:

Major results of classical vector calculus:

1. **Fundamental Theorem of Line Integrals:**

 (a) On a connected domain D, for a continuous vector field \mathbf{F}, the following are equivalent.

 - \mathbf{F} is conservative (i.e., there exists a function ϕ, called a potential function, such that $\mathbf{F} = \nabla \phi$).
 - \mathbf{F} has path independent line integrals.
 - $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for all simple closed curves C in D.

 (b) On a simply connected domain, for a C^1 vector field \mathbf{F}, the three conditions above are also equivalent to: $\nabla \times (\mathbf{F}) = 0$.

2. **Green’s theorem:** Let D be a closed, bounded region in \mathbb{R}^2 whose boundary $C = \partial D$ consists of a finite number of positively oriented, piecewise smooth, simple closed curves. Let \mathbf{F} be a C^1 vector field on D. Then

 $$\int_C \mathbf{F} \cdot d\mathbf{r} = \int \int_D \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \, dx \, dy$$

 equivalently,

 $$\int_C \mathbf{F} \cdot d\mathbf{r} = \int \int_D (\nabla \times \mathbf{F}) \cdot k \, dx \, dy$$

3. **Stokes Theorem:** Let S be a piecewise smooth, oriented surface in \mathbb{R}^3 with surface boundary C consisting of finitely many piecewise smooth simple closed curves with orientation consistent with the unit normal field \mathbf{N} to S. Then

 $$\int_C \mathbf{F} \cdot d\mathbf{r} = \int \int_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int \int_S (\nabla \times \mathbf{F}) \cdot \mathbf{N} \, dS$$

 where \mathbf{N} is the unit normal that orients S.

4. **Gauss (Divergence) Theorem:** Let V be a bounded closed domain in \mathbb{R}^3 with boundary \mathcal{S} consisting of finitely many piecewise smooth closed surfaces with outward unit normal field \mathbf{N}. Let \mathbf{F} be a C^1 vector field on V. Then

 $$\int \int \int_S \mathbf{F} \cdot d\mathbf{S} = \int \int \int_V (\nabla \cdot \mathbf{F}) \, dV$$

 where \mathcal{S} is the 3-D boundary of V, with outward unit normal field on \mathcal{S}.
How to compute vector line integrals $\int_{C} \mathbf{F} \cdot d\mathbf{r}$

1. If \mathbf{F} and C are really nice, use the definition.

2. If \mathbf{F} is conservative (for example, if $\nabla \times \mathbf{F} = \mathbf{0}$ and the domain is simply connected) and you know a potential ϕ, try fundamental theorem of line integrals:

 $$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int \nabla \phi \cdot d\mathbf{r} = \phi(Q) - \phi(P)$$

 where P is initial point and Q is terminal point of C.

3. If C is a simple closed curve and is the surface boundary of a nice surface S and \mathbf{F} is C^1 on S, try Stokes (if C is planar, this reduces to Green):

 $$\int_{C=\partial S} \mathbf{F} \cdot d\mathbf{r} = \int \int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

4. If there is another curve C' s.t. $C + C'$ is a simple closed curve and is the surface boundary of a nice surface S and \mathbf{F} is C^1 on S, try Stokes:

 $$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int \int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} - \int_{C'} \mathbf{F} \cdot d\mathbf{r}$$
How to compute vector surface integrals (flux integrals) $\int_S \mathbf{F} \cdot d\mathbf{S}$:

1. If \mathbf{F} and S are really nice, use the definition.

2. If S is a closed surface and bounds a nice solid region V in \mathbb{R}^3 and \mathbf{F} is C^1 on V, try Gauss:

$$\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int \int \int_V \nabla \cdot \mathbf{F} \, dxdydz$$

3. If there is another surface S' such that $S + S'$ bounds a nice solid region V in \mathbb{R}^3 and \mathbf{F} is C^1 on V, try Gauss:

$$\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int \int \int_V \nabla \cdot \mathbf{F} \, dxdydz - \int \int_{S'} \mathbf{F} \cdot d\mathbf{S}$$

4. If \mathbf{F} is a curl field (i.e., $\mathbf{F} = \nabla \times \mathbf{G}$ for some \mathbf{G}, for example if the domain is bounding and $\nabla \cdot \mathbf{F} = 0$), then

 (a) If $\int_{\partial S} \mathbf{G} \cdot d\mathbf{r}$ is easy to compute, apply Stokes:

 $$\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{G} \cdot d\mathbf{r}$$

 (b) If there is a surface S' such that $\partial S = \partial S'$ and $\int \int_S \mathbf{F} \cdot d\mathbf{S}$ is easy to compute, try Stokes:

 $$\int \int_S \mathbf{F} \cdot d\mathbf{S} = \int \int_S (\nabla \times \mathbf{G}) \cdot d\mathbf{S} = \int_{\partial S = \partial S'} \mathbf{G} \cdot d\mathbf{r} = \int \int_{S'} \mathbf{F} \cdot d\mathbf{S}$$

 Note: this also follows from Gauss: $\nabla \cdot \mathbf{F} = 0$. So, for the solid B bounded by S and S', we have

$$\int \int_S \mathbf{F} \cdot d\mathbf{S} - \int \int_{S'} \mathbf{F} \cdot d\mathbf{S} = \int \int_B \nabla \cdot \mathbf{F} \, dV = 0.$$