Bonus Lecture (integration on manifolds in \mathbb{R}^n):

Defn: A **smooth parameterized k-manifold in** \mathbb{R}^n is a continuous function

$$\bar{r} : D \to \mathbb{R}^n$$

where D is a k-dimensional rectangular parallelepiped

$$D = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_k, b_k] \subset \mathbb{R}^k$$

such that on the interior of D

1. \bar{r} is 1-1
2. \bar{r} is C^1
3. $\{\frac{\partial \bar{r}}{\partial u_i}, i = 1, \ldots, k\}$ are linearly independent.

where

$$\frac{\partial \bar{r}}{\partial u_i} = \frac{d}{dt} \bar{r}(u_1, \ldots, u_{i-1}, t, u_i, \ldots, u_k)$$

which is the tangent vector to the u_i-curve.

D can be generalized to other domains in \mathbb{R}^k.

$k = 1$ is a curve, $k = 2$ is a surface in \mathbb{R}^n. In particular, this generalizes the case $k = 2, n = 3$, which is a smooth parameterized surface with $\frac{\partial \bar{r}}{\partial u}, \frac{\partial \bar{r}}{\partial v}$ as tangents to the u-curves and v-curves and the linear independence condition is equivalent to

$$\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v} \neq 0.$$

Given a smooth parameterized k-manifold \bar{r}, with $\mathcal{M} := \bar{r}(D)$ and a differential k-form $\Phi \in \mathcal{F}_k(\mathcal{M})$

$$\int_\mathcal{M} \Phi := \int \cdots \int_D \Phi\left(\frac{\partial \bar{r}}{\partial u_1}, \ldots, \frac{\partial \bar{r}}{\partial u_k}\right) du_1 \cdots du_k$$
The integral is independent of the parameterization \(\tau \) of \(M \), provided that they induce the same orientation (to be defined below).

Example: \(k = 2, n = 3 \): so, \(M \) is a surface.

\[
\Phi = G_1 dy \wedge dz + G_2 dz \wedge dx + G_3 dx \wedge dy
\]

\[
\int_M \Phi = \int \int_D G_1(\tau(u, v)) \left| \begin{array}{cc}
\left(\frac{\partial \tau}{\partial u} \right)_2 & \left(\frac{\partial \tau}{\partial v} \right)_2 \\
\left(\frac{\partial \tau}{\partial u} \right)_3 & \left(\frac{\partial \tau}{\partial v} \right)_3
\end{array} \right| dudv
\]

\[
+ \int \int_D G_2(\tau(u, v)) \left| \begin{array}{cc}
\left(\frac{\partial \tau}{\partial u} \right)_3 & \left(\frac{\partial \tau}{\partial v} \right)_3 \\
\left(\frac{\partial \tau}{\partial u} \right)_1 & \left(\frac{\partial \tau}{\partial v} \right)_1
\end{array} \right| dudv
\]

\[
+ \int \int_D G_3(\tau(u, v)) \left| \begin{array}{cc}
\left(\frac{\partial \tau}{\partial u} \right)_1 & \left(\frac{\partial \tau}{\partial v} \right)_1 \\
\left(\frac{\partial \tau}{\partial u} \right)_2 & \left(\frac{\partial \tau}{\partial v} \right)_2
\end{array} \right| dudv
\]

\[
= \int \int_D \overline{G} \cdot \left(\frac{\partial \tau}{\partial u} \times \frac{\partial \tau}{\partial v} \right) dudv
\]

\[
= \int \int_M \overline{G} \cdot dS
\]

where \(\overline{G} = (G_1, G_2, G_3) \).

This is a vector surface integral or flux integral (using the normal induced by \(\tau \)).

Example: \(k = 1, n = 3 \):

\[
\Phi = F_1 dx + F_2 dy + F_3 dz \quad \text{and} \quad M \text{ is a parameterized 1-manifold.}
\]

Then

\[
\int_M \Phi = \int_M \overline{F} \cdot d\overline{\tau}
\]

where \(\overline{F} = (F_1, F_2, F_3) \).

Similar to the above, you can show that this is a vector line integral (using the tangent induced by \(\tau \)).

General Stokes Theorem: Let \(M \) be an oriented \(k \)-manifold in \(\mathbb{R}^n \) with or without boundary \(\partial M \), with orientation consistent with
orientation of \(\mathcal{M} \). Let \(\Phi \in \mathcal{F}_{k-1}(\mathcal{M}) \), a differential \((k - 1)\)-form on \(\mathcal{M} \). Then

\[
\int_{\mathcal{M}} d\Phi = \int_{\partial \mathcal{M}} \Phi
\]

Here, \(\partial \mathcal{M} \) denotes the “manifold boundary” not the \(\mathbb{R}^n \) boundary.

This generalizes fundamental theorem of calculus, fundamental theorem of line integrals, Green, Gauss and Stokes.

Example: For \(k = 2, n = 3 \), General Stokes reduces to ordinary Stokes because if we identify \(\Phi = F_1dx + F_2dy + F_3dz \) with \(\overline{F} = (F_1, F_2, F_3) \), then \(d\Phi \) is identified with the curl, \(\nabla \times \overline{F} \).

Defn: A \(k \)-manifold in \(\mathbb{R}^n \) is a closed subset of \(\mathbb{R}^n \) such that for each \(\overline{p} \in \mathcal{M} \), there is an \(n \)-dimensional ball \(B \) centered at \(\overline{p} \) such that \(\mathcal{M} \cap B \) is the image of the interior of a parametrized \(k \)-manifold.

Such a parameterization is viewed as a “local parameterization.”

“Defn”: A \(k \)-manifold with boundary in \(\mathbb{R}^n \) is the same as a \(k \)-manifold except for some “lower dimensional boundary pieces” which include only finitely many \((k-1)\)-dimensional manifolds, whose union is denoted \(\partial \mathcal{M} \).

Defn: A \(k \)-manifold with boundary in \(\mathbb{R}^n \) is the same as a \(k \)-manifold except for some “lower dimensional boundary pieces” which include only finitely many \((k-1)\)-dimensional manifolds, whose union is denoted \(\partial \mathcal{M} \).

Note: you can also consider piecewise smooth manifolds and define orientations on them and their manifold boundaries.

Orientation of Manifolds and their manifold boundaries

Defn: An orientation on a \(k \)-manifold \(\mathcal{M} \) is an equivalence class of non-zero \(k \)-forms \(\omega \) on \(\mathcal{M} \) (called orientation forms).
Here, **non-zero** means that for any choice of linearly independent continuous vector fields $\vec{v}^1, \ldots, \vec{v}^k$ tangent to \mathcal{M}, for all $\vec{p} \in \mathcal{M}$, $\omega(\vec{p})(\vec{v}^1, \ldots, \vec{v}^k) \neq 0$. And two such forms ω_1, ω_2 are **equivalent** if there is a *positive* continuous function f s.t. $\omega_2 = f \omega_1$.

Here, a vector is tangent to \mathcal{M} at \vec{p} if it belongs to the tangent space of \mathcal{M} at \vec{p} which is the linear span of tangents to the u_1, u_2, \ldots, u_k curves at \vec{p}, given by a local parameterization.

An orientation form is used only to determine the signs needed to determine consistency of orientation between \mathcal{M} and $\partial \mathcal{M}$.

Example: A 2-manifold \mathcal{M} in \mathbb{R}^3:

$$\omega(\vec{u}, \vec{v}) = det(\overrightarrow{N}, \vec{u}, \vec{v}) = \overrightarrow{N} \cdot (\vec{u} \times \vec{v})$$

where \vec{u}, \vec{v} are vector fields on \mathcal{M} and \overrightarrow{N} is a continuous nonzero normal vector field on \mathcal{M}.

This generalizes to all n by finding a basis for the tangent space at each point given a smooth parameterization

$$\left\{ \frac{\partial \mathcal{T}}{\partial u} = (a_1, \ldots, a_n), \frac{\partial \mathcal{T}}{\partial v} = (b_1, \ldots, b_n) \right\}$$

and defining

$$\omega = \left(\sum_{i=1}^{n} a_i dx_i \right) \wedge \left(\sum_{i=1}^{n} b_i dx_i \right)$$

Example: A 1-manifold \mathcal{M} in \mathbb{R}^3:

$$\omega(\vec{u}) = \vec{u} \cdot \mathcal{T}$$

where \vec{u} is a vector field on \mathcal{M} and \mathcal{T} is a continuous nonzero tangent vector field on \mathcal{M}.

This generalizes from $n = 3$ to all n.
Note that for $n = 2$, $\overline{u} \cdot \overline{T} = \det (\overline{N}, \overline{u})$ where $\overline{N} = (-T_2, T_1)$.

Defn: Given a k-manifold with manifold boundary $\partial \mathcal{M}$ and orientation k-form ω on \mathcal{M}, the induced orientation $(k - 1)$-form $\partial \omega$ on $\partial \mathcal{M}$ is defined by

$$\partial \omega(\overline{v}^1, \ldots, \overline{v}^{k-1}) = \omega(\overline{Z}, \overline{v}^1, \ldots, \overline{v}^{k-1})$$

where

1. $\overline{v}_1, \ldots, \overline{v}_{k-1}$ and \overline{Z} are vector fields on $\partial \mathcal{M}$
2. \overline{Z} is tangent to \mathcal{M}
3. \overline{Z} is normal to $\partial \mathcal{M}$.
4. \overline{Z} points away from \mathcal{M}.

Note that \overline{Z} is unique up to positive scalar multiples.

Example: $k = 2$ and $n = 3$

An oriented 2-manifold \mathcal{S} is an oriented surface in \mathbb{R}^3. If \mathcal{S} is a closed surface, then $\partial \mathcal{S} = \emptyset$. Otherwise, $\partial \mathcal{S}$ consists of finitely many consistently oriented, piecewise smooth, simple closed curves. As above,

$$\omega(\overline{u}, \overline{v}) = det(\overline{N}, \overline{u}, \overline{v})$$

$$\partial \omega(\overline{u}) = \omega(\overline{Z}, \overline{u}) = det(\overline{N}, \overline{Z}, \overline{u}) = \overline{u} \cdot (\overline{N} \times \overline{Z})$$

Note that $\overline{T} = \overline{N} \times \overline{Z}$ is tangent to $\partial \mathcal{S}$ and points in the direction such that \mathcal{S} is to the left of $\partial \mathcal{S}$.

5
Example: $k = 1$ and $n = 3$.

An oriented 1-manifold C is an oriented curve in \mathbb{R}^n, say a simple curve (for simplicity, please excuse the pun). If C is a simple closed curve, then $\partial C = \emptyset$. Otherwise, $\partial C = \{\overline{P}, \overline{Q}\}$, two distinct points, the initial point \overline{P} and terminal point \overline{Q}.

An orientation form on C is given by $\omega(p)(v) = v \cdot T(p)$ where T is a non-zero continuous tangent vector field along C.

So $\partial_\omega(\overline{P}) = \overrightarrow{Z} \cdot T(\overline{P}) < 0$ and $\partial_\omega(\overline{Q}) = \overrightarrow{Z} \cdot T(\overline{Q}) > 0$.

So, for a differential 0-form $\Phi = f$, a C^∞ function, with parameterization \overline{r} and $\overline{r}(a) = \overline{P}$, $\overline{r}(b) = \overline{Q}$, we have

$$\int_C \nabla f \cdot d\overline{r} = \int_C d\Phi = \int_{\partial C} \Phi = \int_{\{\overline{P}, \overline{Q}\}} \Phi = f(\overline{Q}) - f(\overline{P}).$$

since when $\Phi = f$ is a function $d\Phi = df$ corresponds to ∇f.